Wang WH, Wang L, Fu QQ et al. Structural color: an emerging nanophotonic strategy for multicolor and functionalized applications. Opto-Electron Sci 4, 240030 (2025). doi: 10.29026/oes.2025.240030
Citation: Wang WH, Wang L, Fu QQ et al. Structural color: an emerging nanophotonic strategy for multicolor and functionalized applications. Opto-Electron Sci 4, 240030 (2025). doi: 10.29026/oes.2025.240030

Review Open Access

Structural color: an emerging nanophotonic strategy for multicolor and functionalized applications

More Information
  • Color as an indispensable element in our life brings vitality to us and enriches our lifestyles through decorations, indicators, and information carriers. Structural color offers an intriguing strategy to achieve novel functions and endows color with additional levels of significance in anti-counterfeiting, display, sensor, and printing. Furthermore, structural colors possess excellent properties, such as resistance to extreme external conditions, high brightness, saturation, and purity. Devices and platforms based on structural color have significantly changed our life and are becoming increasingly important. Here, we reviewed four typical applications of structural color and analyzed their advantages and shortcomings. First, a series of mechanisms and fabrication methods are briefly summarized and compared. Subsequently, recent progress of structural color and its applications were discussed in detail. For each application field, we classified them into several types in terms of their functions and properties. Finally, we analyzed recent emerging technologies and their potential for integration into structural color devices, as well as the corresponding challenges.
  • 加载中
  • [1] Teyssier J, Saenko SV, van der Marel D et al. Photonic crystals cause active colour change in chameleons. Nat Commun 6, 6368 (2015). doi: 10.1038/ncomms7368

    CrossRef Google Scholar

    [2] Kim JM, Bak JM, Lim B et al. Background color dependent photonic multilayer films for anti-counterfeiting labeling. Nanoscale 14, 5377–5383 (2022). doi: 10.1039/D1NR08482H

    CrossRef Google Scholar

    [3] Liu CY, Long Y, Yang BQ et al. Facile fabrication of micro-grooves based photonic crystals towards anisotropic angle-independent structural colors and polarized multiple reflections. Sci Bull 62, 938–942 (2017). doi: 10.1016/j.scib.2017.05.015

    CrossRef Google Scholar

    [4] Wang L, Ma LJ, Zhao QL et al. Internal nanocavity based high-resolution and stable structural colours fabricated by laser printing. Opt Express 29, 7428–7434 (2021). doi: 10.1364/OE.418103

    CrossRef Google Scholar

    [5] Raza S, Lavieja C, Zhu XL et al. Resonant laser printing of bi-material metasurfaces: from plasmonic to photonic optical response. Opt Express 26, 20203–20210 (2018). doi: 10.1364/OE.26.020203

    CrossRef Google Scholar

    [6] Isapour G, Lattuada M. Bioinspired stimuli-responsive color-changing systems. Adv Mater 30, 1707069 (2018). doi: 10.1002/adma.201707069

    CrossRef Google Scholar

    [7] Shin J, Jo W, Hwang JH et al. Regional control of multistimuli-responsive structural color-switching surfaces by a micropatterned DNA-hydrogel assembly. Nano Lett 22, 5069–5076 (2022). doi: 10.1021/acs.nanolett.2c00197

    CrossRef Google Scholar

    [8] Qi Y, Zhang SF, Lu AH. Responsive structural colors derived from geometrical deformation of synthetic nanomaterials. Small Struct 3, 2200101 (2022). doi: 10.1002/sstr.202200101

    CrossRef Google Scholar

    [9] Vashistha V, Vaidya G, Hegde RS et al. All-dielectric metasurfaces based on cross-shaped resonators for color pixels with extended gamut. ACS Photonics 4, 1076–1082 (2017). doi: 10.1021/acsphotonics.6b00853

    CrossRef Google Scholar

    [10] Yang Y, Seong J, Choi M et al. Integrated metasurfaces for re-envisioning a near-future disruptive optical platform. Light Sci Appl 12, 152 (2023). doi: 10.1038/s41377-023-01169-4

    CrossRef Google Scholar

    [11] Yun JG, Sung J, Kim SJ et al. Ultracompact meta-pixels for high colour depth generation using a bi-layered hybrid metasurface. Sci Rep 9, 15381 (2019). doi: 10.1038/s41598-019-51946-8

    CrossRef Google Scholar

    [12] Jung C, Kim G, Jeong M et al. Metasurface-driven optically variable devices. Chem Rev 121, 13013–13050 (2021). doi: 10.1021/acs.chemrev.1c00294

    CrossRef Google Scholar

    [13] Li YJ, Hu JT, Zeng YX et al. Recent progress on structural coloration. Photonics Insights 3, R03 (2024). doi: 10.3788/PI.2024.R03

    CrossRef Google Scholar

    [14] Yang DP, Ouyang C, Zhang YQ et al. Rapid fabrication of alcohol responsive photonic prints with changeable color contrasts for anti-counterfeiting application. Adv Mater Interfaces 8, 2001905 (2021). doi: 10.1002/admi.202001905

    CrossRef Google Scholar

    [15] Jo S, Woo JY, Oh JH et al. Angle-insensitive transmission and reflection of nanopatterned dielectric multilayer films for colorful solar cells. ACS Appl Mater Interfaces 12, 29979–29985 (2020).

    Google Scholar

    [16] Song HS, Lee GJ, Yoo DE et al. Reflective color filter with precise control of the color coordinate achieved by stacking silicon nanowire arrays onto ultrathin optical coatings. Sci Rep 9, 3350 (2019). doi: 10.1038/s41598-019-40001-1

    CrossRef Google Scholar

    [17] Zhao YH, Yang YH, Ji CY et al. Thermosensitive plasmonic color enabled by sodium metasurface. Adv Funct Mater 33, 2214492 (2023). doi: 10.1002/adfm.202214492

    CrossRef Google Scholar

    [18] Seo M, Kim J, Oh H et al. Printing of highly vivid structural colors on metal substrates with a metal-dielectric double layer. Adv Opt Mater 7, 1900196 (2019). doi: 10.1002/adom.201900196

    CrossRef Google Scholar

    [19] Zhu XL, Engelberg J, Remennik S et al. Resonant laser printing of optical metasurfaces. Nano Lett 22, 2786–2792 (2022). doi: 10.1021/acs.nanolett.1c04874

    CrossRef Google Scholar

    [20] Bao GY, Yu WY, Fu QQ et al. Low-voltage electrically responsive photonic crystal based on weak-polar colloidal system. Adv Opt Mater 10, 2201188 (2022). doi: 10.1002/adom.202201188

    CrossRef Google Scholar

    [21] Fu QQ, Yu WY, Bao GY et al. Electrically responsive photonic crystals with bistable states for low-power electrophoretic color displays. Nat Commun 13, 7007 (2022). doi: 10.1038/s41467-022-34745-0

    CrossRef Google Scholar

    [22] Wen XX, Lu XG, Wei CP et al. Bright, angle-independent, solvent-responsive, and structurally colored coatings and rewritable photonic paper based on high-refractive-index colloidal quasi-amorphous arrays. ACS Appl Nano Mater 4, 9855–9865 (2021). doi: 10.1021/acsanm.1c02283

    CrossRef Google Scholar

    [23] Wang F, Zhang X, Lin Y et al. Structural coloration pigments based on carbon modified ZnS@SiO2 nanospheres with low-angle dependence, high color saturation, and enhanced stability. ACS Appl Mater Interfaces 8, 5009–5016 (2016). doi: 10.1021/acsami.5b11919

    CrossRef Google Scholar

    [24] Chan JYE, Ruan QF, Ng RJH et al. Rotation-selective moiré magnification of structural color pattern arrays. ACS Nano 13, 14138–14144 (2019). doi: 10.1021/acsnano.9b06772

    CrossRef Google Scholar

    [25] Wang HT, Wang H, Ruan QF et al. Optical fireworks based on multifocal three-dimensional color prints. ACS Nano 15, 10185–10193 (2021). doi: 10.1021/acsnano.1c02131

    CrossRef Google Scholar

    [26] Wang JT, Tonkaev P, Koshelev K et al. Resonantly enhanced second- and third-harmonic generation in dielectric nonlinear metasurfaces. Opto-Electron Adv 7, 230186 (2024). doi: 10.29026/oea.2024.230186

    CrossRef Google Scholar

    [27] Tang YT, Intaravanne Y, Deng JH et al. Nonlinear vectorial metasurface for optical encryption. Phys Rev Appl 12, 024028 (2019). doi: 10.1103/PhysRevApplied.12.024028

    CrossRef Google Scholar

    [28] Dai Q, Guan ZQ, Chang S et al. A single-celled Tri-functional metasurface enabled with triple manipulations of light. Adv Funct Mater 30, 2003990 (2020). doi: 10.1002/adfm.202003990

    CrossRef Google Scholar

    [29] Liu XY, Zhang JC, Leng BR et al. Edge enhanced depth perception with binocular meta-lens. Opto-Electron Sci 3, 230033 (2024). doi: 10.29026/oes.2024.230033

    CrossRef Google Scholar

    [30] Lai XT, Ren Q, Vogelbacher F et al. Bioinspired quasi-3D multiplexed anti-counterfeit imaging via self-assembled and nanoimprinted photonic architectures. Adv Mater 34, 2107243 (2022). doi: 10.1002/adma.202107243

    CrossRef Google Scholar

    [31] Li ZB, Clark AW, Cooper JM. Dual color plasmonic pixels create a polarization controlled Nano color palette. ACS Nano 10, 492–498 (2016). doi: 10.1021/acsnano.5b05411

    CrossRef Google Scholar

    [32] Gao H, Fan XH, Wang YX et al. Multi-foci metalens for spectra and polarization ellipticity recognition and reconstruction. Opto-Electron Sci 2, 220026 (2023). doi: 10.29026/oes.2023.220026

    CrossRef Google Scholar

    [33] Zhou YJ, Liu T, Dai CH et al. Functionality multiplexing in high-efficiency metasurfaces based on coherent wave interferences. Opto-Electron Adv 7, 240086 (2024). doi: 10.29026/oea.2024.240086

    CrossRef Google Scholar

    [34] Lu L, Dong ZG, Tijiptoharsono F et al. Reversible tuning of Mie resonances in the visible spectrum. ACS Nano 15, 19722–19732 (2021). doi: 10.1021/acsnano.1c07114

    CrossRef Google Scholar

    [35] Hentschel M, Koshelev K, Sterl F et al. Dielectric Mie voids: confining light in air. Light Sci Appl 12, 3 (2023). doi: 10.1038/s41377-022-01015-z

    CrossRef Google Scholar

    [36] Yang WH, Xiao SM, Song QH et al. All-dielectric metasurface for high-performance structural color. Nat Commun 11, 1864 (2020). doi: 10.1038/s41467-020-15773-0

    CrossRef Google Scholar

    [37] Ito MM, Gibbons AH, Qin DT et al. Structural colour using organized microfibrillation in glassy polymer films. Nature 570, 363–367 (2019). doi: 10.1038/s41586-019-1299-8

    CrossRef Google Scholar

    [38] Geng J, Xu LY, Yan W et al. High-speed laser writing of structural colors for full-color inkless printing. Nat Commun 14, 565 (2023). doi: 10.1038/s41467-023-36275-9

    CrossRef Google Scholar

    [39] Han RZ, Zhang YC, Jiang QL et al. Ultrafast dynamics of femtosecond laser-induced high spatial frequency periodic structures on silicon surfaces. Opto-Electron Sci 3, 230013 (2024). doi: 10.29026/oes.2024.230013

    CrossRef Google Scholar

    [40] Li SJ, Kou DH, Zhang SF et al. Large-area fabrication of structurally colored and humidity sensitive composite nanofilm via ultrasonic spray-coating. Polymers 13, 3768 (2021). doi: 10.3390/polym13213768

    CrossRef Google Scholar

    [41] Su YF, Tang XY, Huang GH et al. Large-area, flexible, full-color printings based on asymmetry Fabry–Perot cavity resonances. Opt Commun 464, 125483 (2020). doi: 10.1016/j.optcom.2020.125483

    CrossRef Google Scholar

    [42] Lu XD, Wang XH, Li XY et al. Preparation of patterned photonic crystals with high fastness and iridescence effect via resist-screen printing. ACS Appl Mater Interfaces 15, 31935–31942 (2023). doi: 10.1021/acsami.3c06733

    CrossRef Google Scholar

    [43] Bae J, Yoo C, Kim S et al. Three-dimensional printing of structural color using a femtoliter meniscus. ACS Nano 17, 13584–13593 (2023). doi: 10.1021/acsnano.3c02236

    CrossRef Google Scholar

    [44] Liu HL, Wang HT, Wang H et al. High-order photonic cavity modes enabled 3D structural colors. ACS Nano 16, 8244–8252 (2022). doi: 10.1021/acsnano.2c01999

    CrossRef Google Scholar

    [45] Liu YJ, Wang H, Ho J et al. Structural color three-dimensional printing by shrinking photonic crystals. Nat Commun 10, 4340 (2019). doi: 10.1038/s41467-019-12360-w

    CrossRef Google Scholar

    [46] Fu QQ, Zhu HM, Ge JP. Electrically tunable liquid photonic crystals with large dielectric contrast and highly saturated structural colors. Adv Funct Mater 28, 1804628 (2018). doi: 10.1002/adfm.201804628

    CrossRef Google Scholar

    [47] Bao GY, Yu WY, Fu QQ et al. Low-voltage and wide-tuning-range SiO2/aniline electrically responsive photonic crystal fabricated by solvent assisted charge separation. J Mater Chem C 11, 3513–3520 (2023). doi: 10.1039/D2TC05499J

    CrossRef Google Scholar

    [48] Yu WY, Zhao YX, Sheng WT et al. Creation of nanotips on ITO electrode by nanoparticle deposition: an easy way to enhance the performance of electrically responsive photonic crystal and fabricate electrically triggered anticounterfeiting tags. Adv Funct Mater 33, 2304474 (2023). doi: 10.1002/adfm.202304474

    CrossRef Google Scholar

    [49] Huang C, Shang YY, Hua JC et al. Self-destructive structural color liquids for time-temperature indicating. ACS Nano 17, 10269–10279 (2023). doi: 10.1021/acsnano.3c00467

    CrossRef Google Scholar

    [50] Fang Y, Ni YL, Leo SY et al. Reconfigurable photonic crystals enabled by pressure-responsive shape-memory polymers. Nat Commun 6, 7416 (2015). doi: 10.1038/ncomms8416

    CrossRef Google Scholar

    [51] Liu Y, Luo W, Fan QS et al. Polyphenol-mediated synthesis of superparamagnetic magnetite nanoclusters for highly stable magnetically responsive photonic crystals. Adv Funct Mater 33, 2303470 (2023). doi: 10.1002/adfm.202303470

    CrossRef Google Scholar

    [52] Li G, Luo W, Che ZY et al. Lipophilic magnetic photonic nanochains for practical anticounterfeiting. Small 18, 2200662 (2022). doi: 10.1002/smll.202200662

    CrossRef Google Scholar

    [53] Yang ZM, Zhou YM, Chen YQ et al. Reflective color filters and monolithic color printing based on asymmetric Fabry-Perot cavities using nickel as a broadband absorber. Adv Opt Mater 4, 1196–1202 (2016). doi: 10.1002/adom.201600110

    CrossRef Google Scholar

    [54] Liu C, Wang GR, Zhang LY et al. Dynamic color display with viewing-angle tolerance based on the responsive asymmetric Fabry-Perot cavity. ACS Appl Mater Interfaces 14, 7200–7207 (2022). doi: 10.1021/acsami.1c24270

    CrossRef Google Scholar

    [55] Jeong HD, Lee J, Yu ES et al. Physicochemical modulation of nanometer-thick etalon films for liquid-sensitive color display with full-color spectrum generation. ACS Appl Nano Mater 4, 389–395 (2021). doi: 10.1021/acsanm.0c02746

    CrossRef Google Scholar

    [56] Ghobadi A, Hajian H, Soydan MC et al. Lithography-free planar band-pass reflective color filter using a series connection of cavities. Sci Rep 9, 290 (2019). doi: 10.1038/s41598-018-36540-8

    CrossRef Google Scholar

    [57] Li ZY, Butun S, Aydin K. Large-area, lithography-free super absorbers and color filters at visible frequencies using ultrathin metallic films. ACS Photonics 2, 183–188 (2015). doi: 10.1021/ph500410u

    CrossRef Google Scholar

    [58] Fu R, Chen KX, Li ZL et al. Metasurface-based nanoprinting: principle, design and advances. Opto-Electron Sci 1, 220011 (2022). doi: 10.29026/oes.2022.220011

    CrossRef Google Scholar

    [59] Wang DY, Liu ZY, Wang HZ et al. Structural color generation: from layered thin films to optical metasurfaces. Nanophotonics 12, 1019–1081 (2023). doi: 10.1515/nanoph-2022-0063

    CrossRef Google Scholar

    [60] Li MM, Lyu Q, Peng BL et al. Bioinspired colloidal photonic composites: fabrications and emerging applications. Adv Mater 34, 2110488 (2022). doi: 10.1002/adma.202110488

    CrossRef Google Scholar

    [61] Wu PP, Wang JX, Jiang L. Bio-inspired photonic crystal patterns. Mater Horiz 7, 338–365 (2020). doi: 10.1039/C9MH01389J

    CrossRef Google Scholar

    [62] Kim JB, Lee SY, Lee JM et al. Designing structural-color patterns composed of colloidal arrays. ACS Appl Mater Interfaces 11, 14485–14509 (2019). doi: 10.1021/acsami.8b21276

    CrossRef Google Scholar

    [63] Li ZW, Fan QS, Yin YD. Colloidal self-assembly approaches to smart nanostructured materials. Chem Rev 122, 4976–5067 (2022). doi: 10.1021/acs.chemrev.1c00482

    CrossRef Google Scholar

    [64] Wang L, Wang T, Yan RQ et al. Color printing and encryption with polarization-switchable structural colors on all-dielectric metasurfaces. Nano Lett 23, 5581–5587 (2023). doi: 10.1021/acs.nanolett.3c01007

    CrossRef Google Scholar

    [65] Li KX, Li TY, Zhang TL et al. Facile full-color printing with a single transparent ink. Sci Adv 7, eabh1992 (2021). doi: 10.1126/sciadv.abh1992

    CrossRef Google Scholar

    [66] Ma W, Kou YS, Zhao P et al. Bioinspired structural color patterns derived from 1D photonic crystals with high saturation and brightness for double anti-counterfeiting decoration. ACS Appl Polym Mater 2, 1605–1613 (2020). doi: 10.1021/acsapm.0c00047

    CrossRef Google Scholar

    [67] Park CS, Lee SS. Vivid coloration and broadband perfect absorption based on asymmetric Fabry-Pérot nanocavities incorporating platinum. ACS Appl Nano Mater 4, 4216–4225 (2021). doi: 10.1021/acsanm.1c00699

    CrossRef Google Scholar

    [68] Li GH, Wu MX, Ye XY et al. Template-electrodeposited plasmonic metasurfaces for high-sensitivity biomolecular detection. Adv Mater Interfaces 9, 2200292 (2022). doi: 10.1002/admi.202200292

    CrossRef Google Scholar

    [69] Meng FT, Wang ZZ, Zhang SF et al. Flexible photonic composites with responsive information display based on optical path control. Chem Eng J 466, 143286 (2023). doi: 10.1016/j.cej.2023.143286

    CrossRef Google Scholar

    [70] Kou DH, Lin RC, Li C et al. Bioinspired bowl-array enabled angle-independent and fast responsive photonic colors for environmental sensing. Chem Eng J 430, 132805 (2022). doi: 10.1016/j.cej.2021.132805

    CrossRef Google Scholar

    [71] Meng FT, Ju BZ, Wang ZZ et al. Bioinspired polypeptide photonic films with tunable structural color. J Am Chem Soc 144, 7610–7615 (2022). doi: 10.1021/jacs.2c02894

    CrossRef Google Scholar

    [72] Kashem MNH, Gardner K, Momota MR et al. Deciphering the correlation between color response, temperature, and relative humidity in a photo-patternable polymeric nanofilm for tunable multimodal display. Chem Eng J 463, 142333 (2023). doi: 10.1016/j.cej.2023.142333

    CrossRef Google Scholar

    [73] Liu X, Huang Z, Zang JF. All-dielectric silicon nanoring metasurface for full-color printing. Nano Lett 20, 8739–8744 (2020). doi: 10.1021/acs.nanolett.0c03596

    CrossRef Google Scholar

    [74] Yang ZM, Chen YQ, Zhou YM et al. Microscopic interference full-color printing using grayscale-patterned Fabry–Perot resonance cavities. Adv Opt Mater 5, 1700029 (2017). doi: 10.1002/adom.201700029

    CrossRef Google Scholar

    [75] Mao P, Liu CX, Song FQ et al. Manipulating disordered plasmonic systems by external cavity with transition from broadband absorption to reconfigurable reflection. Nat Commun 11, 1538 (2020). doi: 10.1038/s41467-020-15349-y

    CrossRef Google Scholar

    [76] He QL, Ku KH, Vijayamohanan H et al. Switchable full-color reflective photonic ellipsoidal particles. J Am Chem Soc 142, 10424–10430 (2020). doi: 10.1021/jacs.0c02398

    CrossRef Google Scholar

    [77] Wu Y, Sun RK, Ren J et al. Bioinspired dynamic camouflage in programmable thermochromic-patterned photonic films for sophisticated anti-counterfeiting. Adv Funct Mater 33, 2210047 (2023). doi: 10.1002/adfm.202210047

    CrossRef Google Scholar

    [78] He J, Shen XQ, Li HT et al. Scalable and sensitive humidity-responsive polymer photonic crystal films for anticounterfeiting application. ACS Appl Mater Interfaces 14, 27251–27261 (2022). doi: 10.1021/acsami.2c06273

    CrossRef Google Scholar

    [79] Chen K, Fu QQ, Ye SY et al. Multicolor printing using electric-field-responsive and photocurable photonic crystals. Adv Funct Mater 27, 1702825 (2017). doi: 10.1002/adfm.201702825

    CrossRef Google Scholar

    [80] Puzzo DP, Arsenault AC, Manners I et al. Electroactive inverse opal: a single material for all colors. Angew Chem Int Ed 121, 961–965 (2009). doi: 10.1002/ange.200804391

    CrossRef Google Scholar

    [81] Liao JL, Zhu C, Gao BB et al. Multiresponsive elastic colloidal crystals for reversible structural color patterns. Adv Funct Mater 29, 1902954 (2019). doi: 10.1002/adfm.201902954

    CrossRef Google Scholar

    [82] Xi W, Lee YJ, Yu S et al. Ultrahigh-efficient material informatics inverse design of thermal metamaterials for visible-infrared-compatible camouflage. Nat Commun 14, 4694 (2023). doi: 10.1038/s41467-023-40350-6

    CrossRef Google Scholar

    [83] Lee KT, Han SY, Li ZJ et al. Flexible high-color-purity structural color filters based on a higher-order optical resonance suppression. Sci Rep 9, 14917 (2019). doi: 10.1038/s41598-019-51165-1

    CrossRef Google Scholar

    [84] Lai XT, Peng JS, Cheng QF et al. Bioinspired color switchable photonic crystal silicone elastomer kirigami. Angew Chem Int Ed 60, 14307–14312 (2021). doi: 10.1002/anie.202103045

    CrossRef Google Scholar

    [85] Wang JQ, Pang F, Fu QQ et al. Fabrication of anti-counterfeiting patterns with angle-dependent colors by silkscreen printing and UV-curable photonic crystal inks. Sci China Mater 66, 1623–1631 (2022).

    Google Scholar

    [86] Kim GH, An T, Lim G. Bioinspired structural colors fabricated with ZnO quasi-ordered nanostructures. ACS Appl Mater Interfaces 9, 19057–19062 (2017). doi: 10.1021/acsami.6b15892

    CrossRef Google Scholar

    [87] Zhang YX, Han P, Zhou HY et al. Highly brilliant noniridescent structural colors enabled by graphene nanosheets containing graphene quantum dots. Adv Funct Mater 28, 1802585 (2018). doi: 10.1002/adfm.201802585

    CrossRef Google Scholar

    [88] Goodling AE, Nagelberg S, Kaehr B et al. Colouration by total internal reflection and interference at microscale concave interfaces. Nature 566, 523–527 (2019). doi: 10.1038/s41586-019-0946-4

    CrossRef Google Scholar

    [89] Lapidas V, Zhizhchenko A, Pustovalov E et al. Direct laser printing of high-resolution physically unclonable function anti-counterfeit labels. Appl Phys Lett 120, 261104 (2022). doi: 10.1063/5.0091213

    CrossRef Google Scholar

    [90] Hou XY, Vogelbacher F, Lai XT et al. Bioinspired multichannel colorful encryption through kirigami activating grating. Sci Bull 68, 276–283 (2023). doi: 10.1016/j.scib.2023.01.028

    CrossRef Google Scholar

    [91] Zhou MX, Jin F, Wang JY et al. Dynamic color-switching of hydrogel micropillar array under ethanol vapor for optical encryption. Small 19, 2304384 (2023). doi: 10.1002/smll.202304384

    CrossRef Google Scholar

    [92] Koirala I, Shrestha VR, Park CS et al. Polarization-controlled broad color palette based on an ultrathin one-dimensional resonant grating structure. Sci Rep 7, 40073 (2017). doi: 10.1038/srep40073

    CrossRef Google Scholar

    [93] Yang L, Hong XR, Li JF et al. Rechargeable metasurfaces for dynamic color display based on a compositional and mechanical dual-altered mechanism. Research 2022, 9828757 (2022). doi: 10.34133/2022/9828757

    CrossRef Google Scholar

    [94] Liao JL, Ye CQ, Guo J et al. 3D-printable colloidal photonic crystals. Mater Today 56, 29–41 (2022). doi: 10.1016/j.mattod.2022.02.014

    CrossRef Google Scholar

    [95] Cui XM, Zhu XL, Shao L et al. Plasmonic color laser printing inside transparent gold nanodisk-embedded poly(dimethylsiloxane) matrices. Adv Opt Mater 8, 1901605 (2020). doi: 10.1002/adom.201901605

    CrossRef Google Scholar

    [96] Yue YF, Gong JP. Tunable one-dimensional photonic crystals from soft materials. J Photochem Photobiol C Photochem Rev 23, 45–67 (2015). doi: 10.1016/j.jphotochemrev.2015.05.001

    CrossRef Google Scholar

    [97] Joannopoulos JD, Johnson SG, Winn JN et al. Photonic crystals: molding the flow of light 2nd ed (princeton university press, princeton, 2008).

    Google Scholar

    [98] Xuan ZY, Li JY, Liu QQ et al. Artificial structural colors and applications. Innovation 2, 100081 (2021).

    Google Scholar

    [99] Qi D, Wang X, Cheng YZ et al. Design and characterization of one-dimensional photonic crystals based on ZnS/Ge for infrared-visible compatible stealth applications. Opt Mater 62, 52–56 (2016). doi: 10.1016/j.optmat.2016.09.024

    CrossRef Google Scholar

    [100] Hao KZ, Wang X, Zhou L et al. Design of one-dimensional composite photonic crystal with high infrared reflectivity and low microwave reflectivity. Optik 216, 164794 (2020). doi: 10.1016/j.ijleo.2020.164794

    CrossRef Google Scholar

    [101] Bonifacio LD, Lotsch BV, Puzzo DP et al. Stacking the nanochemistry deck: structural and compositional diversity in one-dimensional photonic crystals. Adv Mater 21, 1641–1646 (2009). doi: 10.1002/adma.200802348

    CrossRef Google Scholar

    [102] Wang F, Cheng YZ, Wang X et al. Effective modulation of the photonic band gap based on Ge/ZnS one-dimensional photonic crystal at the infrared band. Opt Mater 75, 373–378 (2018). doi: 10.1016/j.optmat.2017.10.053

    CrossRef Google Scholar

    [103] Su YR, Deng ZC, Qin W et al. Adaptive infrared camouflage based on quasi-photonic crystal with Ge2Sb2Te5. Opt Commun 497, 127203 (2021). doi: 10.1016/j.optcom.2021.127203

    CrossRef Google Scholar

    [104] Park CS, Shrestha VR, Lee SS et al. Trans-reflective color filters based on a phase compensated etalon enabling adjustable color saturation. Sci Rep 6, 25496 (2016). doi: 10.1038/srep25496

    CrossRef Google Scholar

    [105] Feng L, Huo PC, Liang YZ et al. Photonic metamaterial absorbers: morphology engineering and interdisciplinary applications. Adv Mater 32, e1903787 (2020). doi: 10.1002/adma.201903787

    CrossRef Google Scholar

    [106] Chen J, Song G, Cong S et al. Resonant-cavity-enhanced electrochromic materials and devices. Adv Mater 35, e2300179 (2023). doi: 10.1002/adma.202300179

    CrossRef Google Scholar

    [107] Li ZY, Palacios E, Butun S et al. Omnidirectional, broadband light absorption using large-area, ultrathin lossy metallic film coatings. Sci Rep 5, 15137 (2015). doi: 10.1038/srep15137

    CrossRef Google Scholar

    [108] Chen J, Wang Z, Liu CL et al. Mimicking nature's butterflies: electrochromic devices with dual-sided differential colorations. Adv Mater 33, e2007314 (2021). doi: 10.1002/adma.202007314

    CrossRef Google Scholar

    [109] Wu Q, Wang XY, Sun PY et al. Electrochromic metamaterials of metal-dielectric stacks for multicolor displays with high color purity. Nano Lett 21, 6891–6897 (2021). doi: 10.1021/acs.nanolett.1c02030

    CrossRef Google Scholar

    [110] Chen J, Li YW, Zhang TY et al. Reversible active switching of fano and Fabry–Pérot resonances by electrochromic operation. Laser Photonics Rev 16, 2200303 (2022). doi: 10.1002/lpor.202200303

    CrossRef Google Scholar

    [111] Wang Z, Wang XY, Cong S et al. Towards full-colour tunability of inorganic electrochromic devices using ultracompact Fabry-Perot nanocavities. Nat Commun 11, 302 (2020). doi: 10.1038/s41467-019-14194-y

    CrossRef Google Scholar

    [112] Wen CY, Zhao B, Liu YH et al. Flexible mxene-based composite films for multi-spectra defense in radar, infrared and visible light bands. Adv Funct Mater 33, 2214223 (2023). doi: 10.1002/adfm.202214223

    CrossRef Google Scholar

    [113] Zhang XS, Hou K, Sun YQ et al. Bioinspired microplate arrays for magnetically tuned dynamic color. Adv Opt Mater 10, 2200763 (2022). doi: 10.1002/adom.202200763

    CrossRef Google Scholar

    [114] Gao PQ, He J, Zhou SQ et al. Large-area nanosphere self-assembly by a micro-propulsive injection method for high throughput periodic surface nanotexturing. Nano Lett 15, 4591–4598 (2015). doi: 10.1021/acs.nanolett.5b01202

    CrossRef Google Scholar

    [115] Hu LW, Liu XH, Liu CT et al. Self-assembly fabrication and applications of photonic crystal structure color materials. Acta Chim Sinica 81, 809–819 (2023). doi: 10.6023/A23030080

    CrossRef Google Scholar

    [116] Zhang ZH, Chen ZY, Shang LR et al. Structural color materials from natural polymers. Adv Mater Technol 6, 2100296 (2021). doi: 10.1002/admt.202100296

    CrossRef Google Scholar

    [117] Li WW, Xu MZ, Xu HX et al. Metamaterial absorbers: from tunable surface to structural transformation. Adv Mater 34, 2202509 (2022). doi: 10.1002/adma.202202509

    CrossRef Google Scholar

    [118] Hsieh CH, Lu YC, Yang HT. Self-assembled mechanochromic shape memory photonic crystals by doctor blade coating. ACS Appl Mater Interfaces 12, 36478–36484 (2020). doi: 10.1021/acsami.0c07410

    CrossRef Google Scholar

    [119] Lan NXV, Moon J, Kang TH et al. Index-matched composite colloidal crystals of core–shell particles for strong structural colors and optical transparency. Chem Mater 33, 1714–1722 (2021). doi: 10.1021/acs.chemmater.0c04495

    CrossRef Google Scholar

    [120] Huang K, Li QW, Xue YF et al. Application of colloidal photonic crystals in study of organoids. Adv Drug Delivery Rev 201, 115075 (2023). doi: 10.1016/j.addr.2023.115075

    CrossRef Google Scholar

    [121] Fan QS, Li ZW, Li YC et al. Unveiling enhanced electrostatic repulsion in silica nanosphere assembly: formation dynamics of body-centered-cubic colloidal crystals. J Am Chem Soc 145, 28191–28203 (2023). doi: 10.1021/jacs.3c10817

    CrossRef Google Scholar

    [122] Roemling LJ, Bleyer G, Goerlitzer ESA et al. Quantitative optical and structural comparison of 3D and (2+1)D colloidal photonic crystals. Langmuir 39, 5211–5221 (2023). doi: 10.1021/acs.langmuir.3c00293

    CrossRef Google Scholar

    [123] Xie AQ, Li Q, Xi YR et al. Assembly of crack-free photonic crystals: fundamentals, emerging strategies, and perspectives. Acc Mater Res 4, 403–415 (2023). doi: 10.1021/accountsmr.2c00236

    CrossRef Google Scholar

    [124] Li YC, Wang XH, Hu MG et al. Patterned SiO2/polyurethane acrylate inverse opal photonic crystals with high color saturation and tough mechanical strength. Langmuir 35, 14282–14290 (2019). doi: 10.1021/acs.langmuir.9b02485

    CrossRef Google Scholar

    [125] Zhang X, Fu QQ, Ge JP. Triple-state invisible photonic crystal pattern encrypted in hollow-silica/polyurethane film for anticounterfeiting applications. Adv Photonics 2, 2000208 (2021). doi: 10.1002/adpr.202000208

    CrossRef Google Scholar

    [126] Fu FF, Shang LR, Chen ZY et al. Bioinspired living structural color hydrogels. Sci Robot 3, eaar8580 (2018). doi: 10.1126/scirobotics.aar8580

    CrossRef Google Scholar

    [127] Fu FF, Chen ZY, Zhao Z et al. Bio-inspired self-healing structural color hydrogel. Proc Natl Acad Sci USA 114, 5900–5905 (2017). doi: 10.1073/pnas.1703616114

    CrossRef Google Scholar

    [128] Wang C, Lin X, Schäfer CG et al. Spray synthesis of photonic crystal based automotive coatings with bright and angular-dependent structural colors. Adv Funct Mater 31, 2008601 (2021). doi: 10.1002/adfm.202008601

    CrossRef Google Scholar

    [129] He YY, Liu LY, Fu QQ et al. Precise assembly of highly crystalline colloidal photonic crystals inside the polyester yarns: a spray coating synthesis for breathable and durable fabrics with saturated structural colors. Adv Funct Mater 32, 2200330 (2022). doi: 10.1002/adfm.202200330

    CrossRef Google Scholar

    [130] Ko YL, Tsai HP, Lin KY et al. Reusable macroporous photonic crystal-based ethanol vapor detectors by doctor blade coating. J Colloid Interface Sci 487, 360–369 (2017). doi: 10.1016/j.jcis.2016.10.061

    CrossRef Google Scholar

    [131] Lee YH, Won Y, Mun J et al. Hierarchically manufactured chiral plasmonic nanostructures with gigantic chirality for polarized emission and information encryption. Nat Commun 14, 7298 (2023). doi: 10.1038/s41467-023-43112-6

    CrossRef Google Scholar

    [132] Wang ZH, Zhang JH, Li JX et al. Colorful detection of organic solvents based on responsive organic/inorganic hybrid one-dimensional photonic crystals. J Mater Chem 21, 1264–1270 (2011). doi: 10.1039/C0JM02655G

    CrossRef Google Scholar

    [133] Daqiqeh Rezaei S, Dong ZG, Wang H et al. Tri-functional metasurface enhanced with a physically unclonable function. Mater Today 62, 51–61 (2023). doi: 10.1016/j.mattod.2022.11.010

    CrossRef Google Scholar

    [134] Wang YN, Li XY, Zhang YL et al. Structural coloration of textiles with PMMA photonic crystals. J Mater Chem C 12, 254–261 (2024). doi: 10.1039/D3TC02586A

    CrossRef Google Scholar

    [135] Minh NH, Kim K, Kang DH et al. Anti-counterfeiting labels of photonic crystals with versatile structural colors. Nanoscale Adv 6, 5853–5860 (2024). doi: 10.1039/D4NA00814F

    CrossRef Google Scholar

    [136] Tian ZQ, Zhu JY, Guo QL et al. Ultra-bright stimuli-responsive photonic crystals for high-performance anticounterfeiting coatings. Adv Opt Mater 12, 2402776 (2024). doi: 10.1002/adom.202402776

    CrossRef Google Scholar

    [137] Zhang X, Zhang ZY, Long J et al. Vapor absorption and liquefication triggered dynamic color changes and pattern conversions on photonic crystal films for anticounterfeiting. ACS Appl Mater Interfaces 16, 61360–61370 (2024). doi: 10.1021/acsami.4c14457

    CrossRef Google Scholar

    [138] Yue YF, Kurokawa T, Haque MA et al. Mechano-actuated ultrafast full-colour switching in layered photonic hydrogels. Nat Commun 5, 4659 (2014). doi: 10.1038/ncomms5659

    CrossRef Google Scholar

    [139] Qin M, Sun M, Bai RB et al. Bioinspired hydrogel interferometer for adaptive coloration and chemical sensing. Adv Mater 30, 1800468 (2018). doi: 10.1002/adma.201800468

    CrossRef Google Scholar

    [140] Tong LP, Qi W, Wang MF et al. Tunable design of structural colors produced by pseudo-1D photonic crystals of graphene oxide. Small 12, 3433–3443 (2016). doi: 10.1002/smll.201600148

    CrossRef Google Scholar

    [141] Hou J, Zhang HC, Su B et al. Four-dimensional screening anti-counterfeiting pattern by inkjet printed photonic crystals. Chem Asian J 11, 2680–2685 (2016). doi: 10.1002/asia.201600433

    CrossRef Google Scholar

    [142] Wu MF, Zhang CY, Wei FJ et al. A self-assembly based on a hydrogel interface: facile, rapid, and large-scale preparation of colloidal photonic crystals. Mater Chem Front 4, 2409–2417 (2020). doi: 10.1039/D0QM00266F

    CrossRef Google Scholar

    [143] Zhou CT, Qi Y, Zhang SF et al. Rapid fabrication of vivid noniridescent structural colors on fabrics with robust structural stability by screen printing. Dyes Pigm 176, 108226 (2020). doi: 10.1016/j.dyepig.2020.108226

    CrossRef Google Scholar

    [144] Hsu CW, Zhen B, Qiu WJ et al. Transparent displays enabled by resonant nanoparticle scattering. Nat Commun 5, 3152 (2014). doi: 10.1038/ncomms4152

    CrossRef Google Scholar

    [145] Zhou CT, Qi Y, Zhang SF et al. Lotus seedpod inspiration: particle-nested double-inverse opal films with fast and reversible structural color switching for information security. ACS Appl Mater Interfaces 13, 26384–26393 (2021). doi: 10.1021/acsami.1c05178

    CrossRef Google Scholar

    [146] Chung K, Yu S, Heo CJ et al. Flexible, angle-independent, structural color reflectors inspired by morpho butterfly wings. Adv Mater 24, 2375–2379 (2012). doi: 10.1002/adma.201200521

    CrossRef Google Scholar

    [147] Lee HS, Shim TS, Hwang H et al. Colloidal photonic crystals toward structural color palettes for security materials. Chem Mater 25, 2684–2690 (2013). doi: 10.1021/cm4012603

    CrossRef Google Scholar

    [148] Li HT, Zhao GW, Zhu MJ et al. Robust large-sized photochromic photonic crystal film for smart decoration and anti-counterfeiting. ACS Appl Mater Interfaces 14, 14618–14629 (2022). doi: 10.1021/acsami.2c01211

    CrossRef Google Scholar

    [149] Huang HW, Li HT, Yin JM et al. Butterfly-inspired tri-state photonic crystal composite film for multilevel information encryption and anti-counterfeiting. Adv Mater 35, e2211117 (2023). doi: 10.1002/adma.202211117

    CrossRef Google Scholar

    [150] Yan JY, Lin YB, Li JX et al. A convenient, environmental-friendly, panchromatic adjustable, re-writable photonic paper and its optical anti-counterfeiting application. Chem Eng Sci 288, 119818 (2024). doi: 10.1016/j.ces.2024.119818

    CrossRef Google Scholar

    [151] Wei W, Dong B, Cao L et al. Fabrication of angle-independent anti-reflective structural color coating powders. Mater Today Phys 17, 100361 (2021). doi: 10.1016/j.mtphys.2021.100361

    CrossRef Google Scholar

    [152] Wang Y, Guo JH, Sun LY et al. Dual-responsive graphene hybrid structural color hydrogels as visually electrical skins. Chem Eng J 415, 128978 (2021). doi: 10.1016/j.cej.2021.128978

    CrossRef Google Scholar

    [153] Hu HB, Zhong H, Chen CL et al. Magnetically responsive photonic watermarks on banknotes. J Mater Chem C 2, 3695–3702 (2014). doi: 10.1039/c3tc32228a

    CrossRef Google Scholar

    [154] Luo W, Ma HR, Mou FZ et al. Steric-repulsion-based magnetically responsive photonic crystals. Adv Mater 26, 1058–1064 (2014). doi: 10.1002/adma.201304134

    CrossRef Google Scholar

    [155] Huang C, Zhang HB, Yang SY et al. Controllable structural colored screen for real-time display via near-infrared light. ACS Appl Mater Interfaces 12, 20867–20873 (2020). doi: 10.1021/acsami.0c03213

    CrossRef Google Scholar

    [156] He L, Wang MS, Ge JP et al. Magnetic assembly route to colloidal responsive photonic nanostructures. Acc Chem Res 45, 1431–1440 (2012). doi: 10.1021/ar200276t

    CrossRef Google Scholar

    [157] Jung C, Kim SJ, Jang J et al. Disordered-nanoparticle–based etalon for ultrafast humidity-responsive colorimetric sensors and anti-counterfeiting displays. Sci Adv 8, eabm8598 (2022). doi: 10.1126/sciadv.abm8598

    CrossRef Google Scholar

    [158] Rui GH, Ding CC, Gu B et al. Symmetric Ge2Sb2Te5 based metamaterial absorber induced dynamic wide-gamut structural color. J Opt 22, 085003 (2020). doi: 10.1088/2040-8986/aba138

    CrossRef Google Scholar

    [159] Cheng T, Ma YK, Zhao HH et al. Dynamic tuning of optical absorbance and structural color of VO2-based metasurface. Nanophotonics 12, 3121–3133 (2023). doi: 10.1515/nanoph-2023-0169

    CrossRef Google Scholar

    [160] Quan C, Gu S, Zou JL et al. Phase change metamaterial for tunable infrared stealth and camouflage. Opt Express 30, 43741–43751 (2022). doi: 10.1364/OE.478302

    CrossRef Google Scholar

    [161] Ma HR, Zhu MX, Luo W et al. Free-standing, flexible thermochromic films based on one-dimensional magnetic photonic crystals. J Mater Chem C 3, 2848–2855 (2015). doi: 10.1039/C4TC02870H

    CrossRef Google Scholar

    [162] Yang SY, Li J, Wei J. A real-time temperature responsive material based on partial inverse opal photonic crystals and cholesteric liquid crystals. Opt Mater 124, 111992 (2022). doi: 10.1016/j.optmat.2022.111992

    CrossRef Google Scholar

    [163] Gyu Hwang T, Woo Cho D, Hwang DH et al. Forensic-level security using non-imitable anticounterfeiting films: humidity-sensitive 1D photonic crystals with UV-tunable color response and their encryption using small aldehydes. Chem Eng J 473, 145448 (2023). doi: 10.1016/j.cej.2023.145448

    CrossRef Google Scholar

    [164] Yu WY, Zhao YX, Ge JP. Electrically triggered photonic crystal anti-counterfeiting tags with multi-level response fabricated by regioselective modification of ITO electrode surface. J Colloid Interface Sci 659, 603–610 (2024). doi: 10.1016/j.jcis.2023.12.186

    CrossRef Google Scholar

    [165] Hu Y, Yu SY, Wei BR et al. Stimulus-responsive nonclose-packed photonic crystals: fabrications and applications. Mater Horiz 10, 3895–3928 (2023). doi: 10.1039/D3MH00877K

    CrossRef Google Scholar

    [166] Wang JQ, Yin T, Ge JP. A disposable thermally triggered photonic crystal anti-counterfeiting tag with irreversible response and multi-step color changes. Small 20, 2311308 (2024). doi: 10.1002/smll.202311308

    CrossRef Google Scholar

    [167] Deng J, Fu SG, Zhong YF et al. Photonic crystal hydrogels fabricated from nanoparticles of Fe3O4/SiO2 with programmable colors through photopolymerization for applications as anticounterfeiting applications. ACS Appl Nano Mater 7, 7916–7924 (2024). doi: 10.1021/acsanm.4c00504

    CrossRef Google Scholar

    [168] Meng ZP, Liu YK, Huang HF et al. Flexible self-supporting photonic crystals: Fabrications and responsive structural colors. Adv Colloid Interface Sci 333, 103272 (2024). doi: 10.1016/j.cis.2024.103272

    CrossRef Google Scholar

    [169] Wu Y, Sun RK, Han YQ et al. Ultrathin photonic crystal film with supersensitive thermochromism in air. Chem Eng J 451, 139075 (2023). doi: 10.1016/j.cej.2022.139075

    CrossRef Google Scholar

    [170] Zhang ZL, Dong X, Fan YN et al. Chameleon-inspired variable coloration enabled by a highly flexible photonic cellulose film. ACS Appl Mater Interfaces 12, 46710–46718 (2020). doi: 10.1021/acsami.0c13551

    CrossRef Google Scholar

    [171] Liu FF, Zhang SF, Meng Y et al. Thermal responsive photonic crystal achieved through the control of light path guided by phase transition. Small 16, 2002319 (2020). doi: 10.1002/smll.202002319

    CrossRef Google Scholar

    [172] Li HT, Zhu MJ, Tian F et al. Polychrome photonic crystal stickers with thermochromic switchable colors for anti-counterfeiting and information encryption. Chem Eng J 426, 130683 (2021). doi: 10.1016/j.cej.2021.130683

    CrossRef Google Scholar

    [173] Meng ZP, Wu SL, Tang BT et al. Structurally colored polymer films with narrow stop band, high angle-dependence and good mechanical robustness for trademark anti-counterfeiting. Nanoscale 10, 14755–14762 (2018). doi: 10.1039/C8NR04058C

    CrossRef Google Scholar

    [174] Yan YY, Zheng JZ, Wu J et al. Bioinspired artificial photonic nanocrystal skin with high sensitivity and mechanical color change properties for camouflage and visual transmission. ACS Appl Nano Mater 7, 5329–5338 (2024). doi: 10.1021/acsanm.3c06101

    CrossRef Google Scholar

    [175] Wei BR, Zhang ZK, Yang DP et al. Lattice transformation-induced retroreflective structural colors. ACS Appl Mater Interfaces 15, 47350–47358 (2023). doi: 10.1021/acsami.3c07980

    CrossRef Google Scholar

    [176] Yu SY, Ma DK, Qi CZ et al. All-in-one photonic crystals with multi-stimuli-chromic, color-recordable, self-healable, and adhesive functions. Adv Funct Mater 34 , 2411670.

    Google Scholar

    [177] Wang XH, Qiu YF, Chen G et al. Self-healable poly(vinyl alcohol) photonic crystal hydrogel. ACS Appl Polym Mater 2, 2086–2092 (2020). doi: 10.1021/acsapm.0c00305

    CrossRef Google Scholar

    [178] Yin SN, Liu J, Wu DF et al. Robust self-healing magnetically induced colloidal photonic crystal hydrogels. ACS Appl Polym Mater 2, 448–454 (2020). doi: 10.1021/acsapm.9b00905

    CrossRef Google Scholar

    [179] Tao J, Lu XH. Tetraphenylbenzene-modified photonic crystal structure colour coating on fabric substrates for dual-mode anticounterfeiting. Colloids Surf A Physicochem Eng Aspects 655, 130044 (2022). doi: 10.1016/j.colsurfa.2022.130044

    CrossRef Google Scholar

    [180] Yu ZM, Zhao K, Zhao YB et al. Biomimetic intelligent photonic crystal composite films with tri-mode optical states for advanced anti-counterfeiting and information encryption. J Mater Chem C 11, 16527–16535 (2023). doi: 10.1039/D3TC03560C

    CrossRef Google Scholar

    [181] Chen YP, Lou ZZ, Chen ZH et al. Magnetic–fluorescent responsive Janus photonic crystal beads for self-destructive anti-counterfeiting. Langmuir 38, 14387–14399 (2022). doi: 10.1021/acs.langmuir.2c02546

    CrossRef Google Scholar

    [182] Lu YM, Xia X, Guo YX et al. Carbon dots/SiO2 fluorescent photonic crystals for anti-counterfeiting. ACS Appl Nano Mater 7, 6547–6555 (2024). doi: 10.1021/acsanm.4c00272

    CrossRef Google Scholar

    [183] Xu CJ, Huang CG, Yang DP et al. Photo-luminescent photonic crystals for anti-counterfeiting. ACS Omega 7, 7320–7326 (2022). doi: 10.1021/acsomega.1c07150

    CrossRef Google Scholar

    [184] Wang M, Li XS, Yang H et al. Mechanochromic 3D soft photonic crystals enabled anticounterfeiting and encryption information storage. Adv Opt Mater 13 , 2401934.

    Google Scholar

    [185] Wu JY, Li JW, Liu XC et al. Unclonable photonic crystal hydrogels with controllable encoding capacity for anticounterfeiting. ACS Appl Mater Interfaces 14, 2369–2380 (2022). doi: 10.1021/acsami.1c20905

    CrossRef Google Scholar

    [186] Gao YF, Ge KY, Zhang Z et al. Fine optimization of colloidal photonic crystal structural color for physically unclonable multiplex encryption and anti-counterfeiting. Adv Sci 11, 2305876 (2024). doi: 10.1002/advs.202305876

    CrossRef Google Scholar

    [187] Sydney Gladman A, Matsumoto EA, Nuzzo RG et al. Biomimetic 4D printing. Nat Mater 15, 413–418 (2016). doi: 10.1038/nmat4544

    CrossRef Google Scholar

    [188] Ding Z, Yuan C, Peng XR et al. Direct 4D printing via active composite materials. Sci Adv 3, e1602890 (2017). doi: 10.1126/sciadv.1602890

    CrossRef Google Scholar

    [189] Li LJ, Li H, Hu HK et al. Full-color and anti-counterfeit printings with all-dielectric chiral metasurfaces. Photonics 10, 401 (2023). doi: 10.3390/photonics10040401

    CrossRef Google Scholar

    [190] Wilson K, Marocico CA, Pedrueza-Villalmanzo E et al. Plasmonic colour printing by light trapping in two-metal nanostructures. Nanomaterials 9, 963 (2019). doi: 10.3390/nano9070963

    CrossRef Google Scholar

    [191] Li LY, Jin SX, Hu SY et al. Optical metasurfaces for multiplex high-performance grating-type structural colors. Opt Lett 48, 1686–1689 (2023). doi: 10.1364/OL.482891

    CrossRef Google Scholar

    [192] Shang X, Niu JB, Li H et al. Polarization-sensitive structural colors based on anisotropic silicon metasurfaces. Photonics 10, 448 (2023). doi: 10.3390/photonics10040448

    CrossRef Google Scholar

    [193] Wang P, Su JC, Ding P et al. Graphene-metal based tunable radiative metasurface for information encryption and anticounterfeiting. Diamond Relat Mater 131, 109548 (2023). doi: 10.1016/j.diamond.2022.109548

    CrossRef Google Scholar

    [194] Li ZL, Dai Q, Deng LG et al. Structural-color nanoprinting with hidden watermarks. Opt Lett 46, 480–483 (2021). doi: 10.1364/OL.417026

    CrossRef Google Scholar

    [195] Zhao NX, Li ZL, Zhu GD et al. Tri-channel metasurface for watermarked structural-color nanoprinting and holographic imaging. Opt Express 30, 37554–37565 (2022). doi: 10.1364/OE.472789

    CrossRef Google Scholar

    [196] Li ZF, Premaratne M, Zhu WR. Advanced encryption method realized by secret shared phase encoding scheme using a multi-wavelength metasurface. Nanophotonics 9, 3687–3696 (2020). doi: 10.1515/nanoph-2020-0298

    CrossRef Google Scholar

    [197] Yuan H, Zhong ZQ, Zhang YH et al. Multi-channel image encryption based on an all-dielectric metasurface incorporating near-field nanoprinting and far-field holography. Adv Opt Mater 11, 2300352 (2023). doi: 10.1002/adom.202300352

    CrossRef Google Scholar

    [198] Deng J, Li ZL, Li JX et al. Metasurface-assisted optical encryption carrying camouflaged information. Adv Opt Mater 10, 2200949 (2022). doi: 10.1002/adom.202200949

    CrossRef Google Scholar

    [199] Kim I, Jang J, Kim G et al. Pixelated bifunctional metasurface-driven dynamic vectorial holographic color prints for photonic security platform. Nat Commun 12, 3614 (2021). doi: 10.1038/s41467-021-23814-5

    CrossRef Google Scholar

    [200] Sun S, Zhou ZX, Zhang C et al. All-dielectric full-color printing with TiO2 metasurfaces. ACS Nano 11, 4445–4452 (2017). doi: 10.1021/acsnano.7b00415

    CrossRef Google Scholar

    [201] Wen XX, Lu XG, Li JN et al. Multi-responsive, flexible, and structurally colored film based on a 1D diffraction grating structure. iScience 25, 104157 (2022). doi: 10.1016/j.isci.2022.104157

    CrossRef Google Scholar

    [202] Hong YF, Lei YF, Fang XM et al. All-dielectric high saturation structural colors with Si3N4 metasurface. Mod Phys Lett B 34, 2050142 (2020).

    Google Scholar

    [203] Kim Y, Hyun JK. Encoding Mie, plasmonic, and diffractive structural colors in the same pixel. Nanophotonics 12, 3341–3349 (2023). doi: 10.1515/nanoph-2023-0254

    CrossRef Google Scholar

    [204] Gu JT, Liu Y, Meng NN et al. Structural colors based on diamond metasurface for information encryption. Adv Opt Mater 11, 2202826 (2023). doi: 10.1002/adom.202202826

    CrossRef Google Scholar

    [205] Wei YX, Zhao M, Yang ZY. Silicon metasurface embedded Fabry-Perot cavity enables the high-quality transmission structural color. Opt Lett 47, 5344–5347 (2022). doi: 10.1364/OL.468133

    CrossRef Google Scholar

    [206] Li HX, Xu YL, Zhang X et al. All-dielectric high saturation structural colors enhanced by multipolar modulated metasurfaces. Opt Express 30, 28954–28965 (2022). doi: 10.1364/OE.464782

    CrossRef Google Scholar

    [207] Li LL, Ruan HX, Liu C et al. Machine-learning reprogrammable metasurface imager. Nat Commun 10, 1082 (2019). doi: 10.1038/s41467-019-09103-2

    CrossRef Google Scholar

    [208] Liu XH, Wang P, Xiao CY et al. Compatible stealth metasurface for laser and infrared with radiative thermal engineering enabled by machine learning. Adv Funct Mater 33, 2212068 (2023). doi: 10.1002/adfm.202212068

    CrossRef Google Scholar

    [209] Zhang RZ, Guo YH, Zhang F et al. Dual-layer metasurface enhanced capacity of polarization multiplexing. Laser Photonics Rev 18, 2400126 (2024). doi: 10.1002/lpor.202400126

    CrossRef Google Scholar

    [210] Wang QS, Fang Y, Meng Y et al. Vortex-field enhancement through high-threshold geometric metasurface. Opto-Electron Adv 7, 240112 (2024). doi: 10.29026/oea.2024.240112

    CrossRef Google Scholar

    [211] Li XT, Cai XD, Liu C et al. Cascaded metasurfaces enabling adaptive aberration corrections for focus scanning. Opto-Electron Adv 7, 240085 (2024). doi: 10.29026/oea.2024.240085

    CrossRef Google Scholar

    [212] Xin W, Jiang HB, Sun TQ et al. Optical anisotropy of black phosphorus by total internal reflection. Nano Mater Sci 1, 304–309 (2019). doi: 10.1016/j.nanoms.2019.09.006

    CrossRef Google Scholar

    [213] Li RJ, Li KX, Deng X et al. Dynamic high-capacity structural-color encryption via inkjet printing and image recognition. Adv Funct Mater 34, 2404706 (2024). doi: 10.1002/adfm.202404706

    CrossRef Google Scholar

    [214] Shanker R, Sardar S, Chen SZ et al. Noniridescent biomimetic photonic microdomes by inkjet printing. Nano Lett 20, 7243–7250 (2020). doi: 10.1021/acs.nanolett.0c02604

    CrossRef Google Scholar

    [215] Zhu HZ, Li Q, Tao CN et al. Multispectral camouflage for infrared, visible, lasers and microwave with radiative cooling. Nat Commun 12, 1805 (2021). doi: 10.1038/s41467-021-22051-0

    CrossRef Google Scholar

    [216] Yuan X, Xu W, Huang F et al. Structural colour of polyester fabric coated with Ag/TiO2 multilayer films. Surf Eng 33, 231–236 (2017). doi: 10.1080/02670844.2016.1216264

    CrossRef Google Scholar

    [217] Chen FL, Wang SW, Liu XX et al. High performance colored selective absorbers for architecturally integrated solar applications. J Mater Chem A 3, 7353–7360 (2015). doi: 10.1039/C5TA00694E

    CrossRef Google Scholar

    [218] Lu TW, Lin Y, Zhang TQ et al. Self-polarized RGB device realized by semipolar micro-LEDs and perovskite-in-polymer films for backlight applications. Opto-Electron Adv 7, 230210 (2024). doi: 10.29026/oea.2024.230210

    CrossRef Google Scholar

    [219] Badloe T, Kim J, Kim I et al. Liquid crystal-powered Mie resonators for electrically tunable photorealistic color gradients and dark blacks. Light Sci Appl 11, 118 (2022). doi: 10.1038/s41377-022-00806-8

    CrossRef Google Scholar

    [220] Li SQ, Song WZ, Ye M et al. Generalized method of images and reflective color generation from ultrathin multipole resonators. ACS Photonics 5, 2374–2383 (2018). doi: 10.1021/acsphotonics.8b00161

    CrossRef Google Scholar

    [221] Geng GZ, Pan RH, Li CS et al. Height-gradiently-tunable nanostructure arrays by grayscale assembly nanofabrication for ultra-realistic imaging. Laser Photonics Rev 17, 2300073 (2023). doi: 10.1002/lpor.202300073

    CrossRef Google Scholar

    [222] Lin J, Luo SW, Zuo DL et al. Multilayer structure for highly transmissive angle-tolerant color filter. Opt Commun 427, 158–162 (2018). doi: 10.1016/j.optcom.2018.06.033

    CrossRef Google Scholar

    [223] Gao HX, Liang YZ, Li R et al. Eye-friendly reflective structural colors with shortwave infrared shielding. Adv Opt Mater 10, 2101342 (2022). doi: 10.1002/adom.202101342

    CrossRef Google Scholar

    [224] Shen YC, Rinnerbauer V, Wang I et al. Structural colors from fano resonances. ACS Photonics 2, 27–32 (2015). doi: 10.1021/ph500400w

    CrossRef Google Scholar

    [225] Park JG, Jeong YH, Ji S et al. Multimodal wrinkle micro-nanoarchitectonics by patterned surface material properties for transformative structural coloration. Adv Opt Mater 11, 2300279 (2023). doi: 10.1002/adom.202300279

    CrossRef Google Scholar

    [226] Miller BH, Liu H, Kolle M. Scalable optical manufacture of dynamic structural colour in stretchable materials. Nat Mater 21, 1014–1018 (2022). doi: 10.1038/s41563-022-01318-x

    CrossRef Google Scholar

    [227] Li B, Wu YH, Sun Y et al. Switchable and tunable chemical/structure color in a flexible hierarchical surface. Adv Intell Syst 6, 2200415 (2023).

    Google Scholar

    [228] Lyu P, Gong T, Rebello Sousa Dias M et al. Transient structural colors with magnesium-based reflective filters. Adv Opt Mater 10, 2200159 (2022). doi: 10.1002/adom.202200159

    CrossRef Google Scholar

    [229] Chang HK, Park J. Flexible all-solid-state electrically tunable photonic crystals. Adv Opt Mater 6, 1800792 (2018). doi: 10.1002/adom.201800792

    CrossRef Google Scholar

    [230] Han MG, Heo CJ, Shim H et al. Structural color manipulation using tunable photonic crystals with enhanced switching reliability. Adv Opt Mater 2, 535–541 (2014). doi: 10.1002/adom.201400038

    CrossRef Google Scholar

    [231] Li QL, Li XL, Wang W et al. Magnetic nanoparticles modified by citrate groups for magnetically responsive photonic crystals. J Phys Chem Solids 122, 278–283 (2018). doi: 10.1016/j.jpcs.2018.06.037

    CrossRef Google Scholar

    [232] Li YL, Lu XG, Yang S. Preparation and properties of silver-deposited magnetically responsive colloidal photonic crystals for significant fluorescence enhancement. Opt Mater 122, 111815 (2021). doi: 10.1016/j.optmat.2021.111815

    CrossRef Google Scholar

    [233] Li Y, Long Y, Yang GQ et al. Tunable amplified spontaneous emission based on liquid magnetically responsive photonic crystals. J Mater Chem C 7, 3740–3743 (2019). doi: 10.1039/C8TC05763J

    CrossRef Google Scholar

    [234] Pan LT, Peng Z, Yu HR et al. Robust synthesis of highly charged superparamagnetic Fe3O4 colloidal nanocrystal clusters for magnetically responsive photonic crystals. New J Chem 45, 16511–16519 (2021). doi: 10.1039/D1NJ02582A

    CrossRef Google Scholar

    [235] Xu JS, Zhao Q, Hu TY et al. Rapid preparation of size-tunable Fe3O4@SiO2 nanoparticles to construct magnetically responsive photonic crystals. J Nanopart Res 23, 232 (2021). doi: 10.1007/s11051-021-05342-x

    CrossRef Google Scholar

    [236] Li YL, Chen X, Geng HK et al. Oxidation control of bottlebrush molecular conformation for producing libraries of photonic structures. Angew Chem Int Ed 60, 3647–3653 (2021). doi: 10.1002/anie.202011702

    CrossRef Google Scholar

    [237] Park TH, Eoh H, Jung Y et al. Thermo-adaptive block copolymer structural color electronics. Adv Funct Mater 31, 2008548 (2021). doi: 10.1002/adfm.202008548

    CrossRef Google Scholar

    [238] Sun LY, Wang Y, Bian FK et al. Bioinspired optical and electrical dual-responsive heart-on-a-chip for hormone testing. Sci Bull 68, 938–945 (2023). doi: 10.1016/j.scib.2023.04.010

    CrossRef Google Scholar

    [239] Fu FF, Shang LR, Zheng FY et al. Cells cultured on core-shell photonic crystal barcodes for drug screening. ACS Appl Mater Interfaces 8, 13840–13848 (2016). doi: 10.1021/acsami.6b04966

    CrossRef Google Scholar

    [240] Xing HH, Li J, Guo JB et al. Bio-inspired thermal-responsive inverse opal films with dual structural colors based on liquid crystal elastomer. J Mater Chem C 3, 4424–4430 (2015). doi: 10.1039/C5TC00548E

    CrossRef Google Scholar

    [241] Dai CJ, Li ZL, Li Z et al. Direct-printing hydrogel-based platform for humidity-driven dynamic full-color printing and holography. Adv Funct Mater 33, 2212053 (2023). doi: 10.1002/adfm.202212053

    CrossRef Google Scholar

    [242] Zhao YJ, Shang LR, Cheng Y et al. Spherical colloidal photonic crystals. Acc Chem Res 47, 3632–3642 (2014). doi: 10.1021/ar500317s

    CrossRef Google Scholar

    [243] Zhao YJ, Zhao XW, Pei XP et al. Multiplex detection of tumor markers with photonic suspension array. Anal Chim Acta 633, 103–108 (2009). doi: 10.1016/j.aca.2008.11.035

    CrossRef Google Scholar

    [244] Zheng FY, Cheng Y, Wang J et al. Aptamer-functionalized barcode particles for the capture and detection of multiple types of circulating tumor cells. Adv Mater 26, 7333–7338 (2014). doi: 10.1002/adma.201403530

    CrossRef Google Scholar

    [245] Kim I, Kim H, Han S et al. Metasurfaces-driven hyperspectral imaging via multiplexed plasmonic resonance energy transfer. Adv Mater 35, e2300229 (2023). doi: 10.1002/adma.202300229

    CrossRef Google Scholar

    [246] Zhang DG, Bian FK, Cai LJ et al. Bioinspired photonic barcodes for multiplexed target cycling and hybridization chain reaction. Biosens Bioelectron 143, 111629 (2019). doi: 10.1016/j.bios.2019.111629

    CrossRef Google Scholar

    [247] Bian FK, Chen HX, Sun LY et al. AIEgens-integrated structural color barcodes for binary screening of microRNAs. Chem Eng J 471, 144800 (2023). doi: 10.1016/j.cej.2023.144800

    CrossRef Google Scholar

    [248] Zhao Z, Wang H, Shang LR et al. Bioinspired heterogeneous structural color stripes from capillaries. Adv Mater 29, 1704569 (2017). doi: 10.1002/adma.201704569

    CrossRef Google Scholar

    [249] Zheng H, Li J, Song WZ et al. Thermal-responsive photonic crystals based on physically cross-linked inverse opal nanocomposite hydrogels. J Wuhan Univ Technol Mater Sci Ed 36, 289–296 (2021). doi: 10.1007/s11595-021-2408-8

    CrossRef Google Scholar

    [250] Ueno K, Matsubara K, Watanabe M et al. An electro- and thermochromic hydrogel as a full-color indicator. Adv Mater 19, 2807–2812 (2007). doi: 10.1002/adma.200700159

    CrossRef Google Scholar

    [251] Wang XQ, Yang SY, Wang CF et al. Multifunctional hydrogels with temperature, ion, and magnetocaloric stimuli-responsive performances. Macromol Rapid Commun 37, 759–768 (2016). doi: 10.1002/marc.201500748

    CrossRef Google Scholar

    [252] Zhang ZH, Chen ZY, Sun LY et al. Bio-inspired angle-independent structural color films with anisotropic colloidal crystal array domains. Nano Res 12, 1579–1584 (2019). doi: 10.1007/s12274-019-2395-7

    CrossRef Google Scholar

    [253] Cai LJ, Wang Y, Sun LY et al. Bio-inspired multi-responsive structural color hydrogel with constant volume and wide viewing angles. Adv Opt Mater 9, 2100831 (2021). doi: 10.1002/adom.202100831

    CrossRef Google Scholar

    [254] Xu MH, Liang SZ, Zhang WQ et al. Biomimetic color-changing skin based on temperature-responsive hydrogel microspheres with the photonic crystal structure. J Polym Sci 61, 100–107 (2023). doi: 10.1002/pol.20220411

    CrossRef Google Scholar

    [255] Xiong MY, Sheng YH, Di YS et al. Power-free and self-cleaning solar light detector based on the temperature-sensitive structural color and photothermal effect. ACS Appl Mater Interfaces 13, 33566–33573 (2021). doi: 10.1021/acsami.1c09533

    CrossRef Google Scholar

    [256] Liu FF, Zhang SF, Jin X et al. Thermal-responsive photonic crystal with function of color switch based on thermochromic system. ACS Appl Mater Interfaces 11, 39125–39131 (2019). doi: 10.1021/acsami.9b16411

    CrossRef Google Scholar

    [257] Katsura C, Nobukawa S, Sugimoto H et al. Solvent-responsive coloring behavior of colloidal crystal films consisting of cross-linked polymer nanoparticles. Colloid Polym Sci 295, 1709–1715 (2017). doi: 10.1007/s00396-017-4147-0

    CrossRef Google Scholar

    [258] Lim YS, Kim JS, Choi JH et al. Solvatochromic discrimination of alcoholic solvents by structural colors of polydopamine nanoparticle thin films. Colloid Interface Sci Commun 48, 100624 (2022). doi: 10.1016/j.colcom.2022.100624

    CrossRef Google Scholar

    [259] Wang YP, Niu WB, Zhang SF et al. Solvent responsive single-material inverse opal polymer actuator with structural color switching. J Mater Sci 55, 817–827 (2020). doi: 10.1007/s10853-019-04055-w

    CrossRef Google Scholar

    [260] Zhang ZK, Wei BR, Yang DP et al. Artificial chameleon skins active mimicking reversible off/on structural colors of insect wings. Adv Mater Interfaces 9, 2201252 (2022). doi: 10.1002/admi.202201252

    CrossRef Google Scholar

    [261] Sun S, Yang WH, Zhang C et al. Real-time tunable colors from microfluidic reconfigurable all-dielectric metasurfaces. ACS Nano 12, 2151–2159 (2018). doi: 10.1021/acsnano.7b07121

    CrossRef Google Scholar

    [262] Szendrei K, Jiménez-Solano A, Lozano G et al. Fluorescent humidity sensors based on photonic resonators. Adv Opt Mater 5, 1700663 (2017). doi: 10.1002/adom.201700663

    CrossRef Google Scholar

    [263] Diao YY, Liu XY, Toh GW et al. Multiple structural coloring of silk-fibroin photonic crystals and humidity-responsive color sensing. Adv Funct Mater 23, 5373–5380 (2013). doi: 10.1002/adfm.201203672

    CrossRef Google Scholar

    [264] Xu JS, Hu TY, Zhao Q et al. Fe3O4@SiO2/PAM/glycerol photonic crystal film as a long-term effective sensor for ambient humidity. Mater Res Bull 153, 111895 (2022). doi: 10.1016/j.materresbull.2022.111895

    CrossRef Google Scholar

    [265] Kim J, Kim H, Kang H et al. A water-soluble label for food products prevents packaging waste and counterfeiting. Nat Food 5, 293–300 (2024). doi: 10.1038/s43016-024-00957-4

    CrossRef Google Scholar

    [266] Ding M, Chen G, Xu WC et al. Bio-inspired synthesis of nanomaterials and smart structures for electrochemical energy storage and conversion. Nano Mater Sci 2, 264–280 (2020). doi: 10.1016/j.nanoms.2019.09.011

    CrossRef Google Scholar

    [267] Lan RC, Wang Q, Shen C et al. Humidity-induced simultaneous visible and fluorescence photonic patterns enabled by integration of covalent bonds and ionic crosslinks. Adv Funct Mater 31, 2106419 (2021). doi: 10.1002/adfm.202106419

    CrossRef Google Scholar

    [268] Bak JM, Kim Y, Park C et al. Dual-responsive photonic multilayers in combination with a smartphone application as high-security anti-counterfeiting devices. Chem Eng J 468, 143631 (2023). doi: 10.1016/j.cej.2023.143631

    CrossRef Google Scholar

    [269] Delaney C, Qian J, Zhang X et al. Direct laser writing of vapour-responsive photonic arrays. J Mater Chem C 9, 11674–11678 (2021). doi: 10.1039/D1TC01796A

    CrossRef Google Scholar

    [270] Li C, Lotsch BV. Stimuli-responsive 2D polyelectrolyte photonic crystals for optically encoded pH sensing. Chem Commun 48, 6169–6171 (2012). doi: 10.1039/c2cc31916k

    CrossRef Google Scholar

    [271] Fei X, Lu T, Ma J et al. Bioinspired polymeric photonic crystals for high cycling pH-sensing performance. ACS Appl Mater Interfaces 8, 27091–27098 (2016). doi: 10.1021/acsami.6b08724

    CrossRef Google Scholar

    [272] Luo W, Cui Q, Fang K et al. Responsive Hydrogel-based photonic nanochains for microenvironment sensing and imaging in real time and high resolution. Nano Lett 20, 803–811 (2020). doi: 10.1021/acs.nanolett.7b04218

    CrossRef Google Scholar

    [273] Li WY, Zeng XZ, Dong YJ et al. Laser nanoprinting of floating three-dimensional plasmonic color in pH-responsive hydrogel. Nanotechnology 33, 065302 (2022). doi: 10.1088/1361-6528/ac345b

    CrossRef Google Scholar

    [274] Zhang MM, Hou ZY, Liu SM et al. Temperature/pH dual-responsive reversible morphology evolution of block copolymer microparticles under three-dimensional confinement. Sci China Chem 66, 3587–3593 (2023). doi: 10.1007/s11426-023-1714-1

    CrossRef Google Scholar

    [275] Couturier JP, Sütterlin M, Laschewsky A et al. Responsive inverse opal hydrogels for the sensing of macromolecules. Angew Chem Int Ed 54, 6641–6644 (2015). doi: 10.1002/anie.201500674

    CrossRef Google Scholar

    [276] Wang Y, Zhang ZH, Chen HX et al. Bio-inspired shape-memory structural color hydrogel film. Sci Bull 67, 512–519 (2022). doi: 10.1016/j.scib.2021.10.010

    CrossRef Google Scholar

    [277] Xia YQ, Gao S, He H et al. A new and straightforward strategy to prepare an optical hydrogel film with dynamic structural colors. J Phys Chem C 124, 16083–16089 (2020). doi: 10.1021/acs.jpcc.0c02878

    CrossRef Google Scholar

    [278] Xue H, Liu F, Wang Z et al. Bio-inspired dual-responsive photonic crystal with smart responsive hydrogel for pH and temperature detection. Mater Des 233, 112242 (2023). doi: 10.1016/j.matdes.2023.112242

    CrossRef Google Scholar

    [279] Kim Y, Kim SH, Girma HG et al. Dual responsive dependent background color based on thermochromic 1D photonic crystal multilayer films. Polymers 14, 5330 (2022). doi: 10.3390/polym14235330

    CrossRef Google Scholar

    [280] Shen HF, Lin Q, Tang HC et al. Fabrication of temperature- and alcohol-responsive photonic crystal hydrogel and its application for sustained drug release. Langmuir 38, 3785–3794 (2022). doi: 10.1021/acs.langmuir.1c03378

    CrossRef Google Scholar

    [281] Li XK, Liu JZ, Zhang XX. Pressure/temperature dual-responsive cellulose nanocrystal hydrogels for on-demand schemochrome patterning. Adv Funct Mater 33, 2306208 (2023). doi: 10.1002/adfm.202306208

    CrossRef Google Scholar

    [282] Yan D, Lu W, Qiu LL et al. Thermal and stress tension dual-responsive photonic crystal nanocomposite hydrogels. RSC Adv 9, 21202–21205 (2019). doi: 10.1039/C9RA02768H

    CrossRef Google Scholar

    [283] Shen C, Wang ZZ, Huang R et al. Humidity-responsive photonic crystals with pH and SO2 gas detection ability based on cholesteric liquid crystalline networks. ACS Appl Mater Interfaces 14, 16764–16771 (2022). doi: 10.1021/acsami.2c03420

    CrossRef Google Scholar

    [284] Belmonte A, Ussembayev YY, Bus T et al. Dual light and temperature responsive micrometer-sized structural color actuators. Small 16, e1905219 (2020). doi: 10.1002/smll.201905219

    CrossRef Google Scholar

    [285] Kim T, Lee JW, Park C et al. Self-powered finger motion-sensing structural color display enabled by block copolymer photonic crystal. Nano Energy 92, 106688 (2022). doi: 10.1016/j.nanoen.2021.106688

    CrossRef Google Scholar

    [286] Xue JZ, Yao MN, Wang GY et al. An environmental perception self-adaptive discolorable hydrogel film toward sensing and display. Adv Opt Mater 9, 2100116 (2021). doi: 10.1002/adom.202100116

    CrossRef Google Scholar

    [287] Chen CW, Wang Y, Zhang H et al. Responsive and self-healing structural color supramolecular hydrogel patch for diabetic wound treatment. Bioact Mater 15, 194–202 (2022).

    Google Scholar

    [288] Nagasaki Y, Suzuki M, Hotta I et al. Control of Si-based all-dielectric printing color through oxidation. ACS Photonics 5, 1460–1466 (2018). doi: 10.1021/acsphotonics.7b01467

    CrossRef Google Scholar

    [289] Nagasaki Y, Hotta I, Suzuki M et al. Metal-masked Mie-resonant full-color printing for achieving free-space resolution limit. ACS Photonics 5, 3849–3855 (2018). doi: 10.1021/acsphotonics.8b00895

    CrossRef Google Scholar

    [290] Zhang YX, Zhang Q, Ouyang X et al. Ultrafast light-controlled growth of silver nanoparticles for direct plasmonic color printing. ACS Nano 12, 9913–9921 (2018). doi: 10.1021/acsnano.8b02868

    CrossRef Google Scholar

    [291] James TD, Mulvaney P, Roberts A. The plasmonic pixel: large area, wide gamut color reproduction using aluminum nanostructures. Nano Lett 16, 3817–3823 (2016). doi: 10.1021/acs.nanolett.6b01250

    CrossRef Google Scholar

    [292] Roberts AS, Pors A, Albrektsen O et al. Subwavelength plasmonic color printing protected for ambient use. Nano Lett 14, 783–787 (2014). doi: 10.1021/nl404129n

    CrossRef Google Scholar

    [293] Tan SJ, Zhang L, Zhu D et al. Plasmonic color palettes for photorealistic printing with aluminum nanostructures. Nano Lett 14, 4023–4029 (2014). doi: 10.1021/nl501460x

    CrossRef Google Scholar

    [294] Huang Y, Zhu J, Jin SX et al. Polarization-controlled bifunctional metasurface for structural color printing and beam deflection. Opt Lett 45, 1707–1710 (2020). doi: 10.1364/OL.387408

    CrossRef Google Scholar

    [295] Wang L, Wang T, Yan RQ et al. High performance two-way full colors of transmission and reflection generated by hybrid Mg–TiO2 metasurfaces. Opt Laser Technol 157, 108770 (2023). doi: 10.1016/j.optlastec.2022.108770

    CrossRef Google Scholar

    [296] Yue WJ, Gao S, Lee SS et al. Highly reflective subtractive color filters capitalizing on a silicon metasurface integrated with nanostructured aluminum mirrors. Laser Photonics Rev 11, 1600285 (2017). doi: 10.1002/lpor.201600285

    CrossRef Google Scholar

    [297] Wang H, Ruan QF, Wang HT et al. Full color and grayscale painting with 3D printed low-index nanopillars. Nano Lett 21, 4721–4729 (2021). doi: 10.1021/acs.nanolett.1c00979

    CrossRef Google Scholar

    [298] Overvig AC, Shrestha S, Malek SC et al. Dielectric metasurfaces for complete and independent control of the optical amplitude and phase. Light Sci Appl 8, 92 (2019). doi: 10.1038/s41377-019-0201-7

    CrossRef Google Scholar

    [299] Yang JH, Babicheva VE, Yu MW et al. Structural colors enabled by lattice resonance on silicon nitride metasurfaces. ACS Nano 14, 5678–5685 (2020). doi: 10.1021/acsnano.0c00185

    CrossRef Google Scholar

    [300] Li WB, Zhang C, Lan D et al. Imbibition-induced ultrafast assembly and printing of colloidal photonic crystals. J Colloid Interface Sci 624, 370–376 (2022). doi: 10.1016/j.jcis.2022.05.114

    CrossRef Google Scholar

    [301] Zhang J, Qin YP, Ou YT et al. Injectable granular hydrogels as colloidal assembly microreactors for customized structural colored objects. Angew Chem Int Ed 61, e202206339 (2022). doi: 10.1002/anie.202206339

    CrossRef Google Scholar

    [302] Chen XM, Wang ZH, Tang MS et al. Reusable shape-memory photonic crystal paper for pin-printing and high-resolution press printing. Adv Eng Mater 25, 2300753 (2023). doi: 10.1002/adem.202300753

    CrossRef Google Scholar

    [303] Shi SH, Lu H, Li YW et al. Asymmetric nanocavities with wide reflection color gamut for color printing. Nanotechnology 34, 025201 (2023). doi: 10.1088/1361-6528/ac988e

    CrossRef Google Scholar

    [304] Zhao JC, Qiu M, Yu XC et al. Defining deep-subwavelength-resolution, wide-color-gamut, and large-viewing-angle flexible subtractive colors with an ultrathin asymmetric Fabry-Perot lossy cavity. Adv Opt Mater 7, 1900646 (2019). doi: 10.1002/adom.201900646

    CrossRef Google Scholar

    [305] Choi S, Zhao Z, Zuo JW et al. Structural color printing via polymer-assisted photochemical deposition. Light Sci Appl 11, 84 (2022). doi: 10.1038/s41377-022-00776-x

    CrossRef Google Scholar

    [306] Hu HB, Gao WJ, Zang R et al. Direct growth of vertically orientated nanocavity arrays for plasmonic color generation. Adv Funct Mater 30, 2002287 (2020). doi: 10.1002/adfm.202002287

    CrossRef Google Scholar

    [307] Cencillo-Abad P, Franklin D, Mastranzo-Ortega P et al. Ultralight plasmonic structural color paint. Sci Adv 9, eadf7207 (2023). doi: 10.1126/sciadv.adf7207

    CrossRef Google Scholar

    [308] Hail CU, Schnoering G, Damak M et al. A plasmonic painter's method of color mixing for a continuous red-green-blue palette. ACS Nano 14, 1783–1791 (2020). doi: 10.1021/acsnano.9b07523

    CrossRef Google Scholar

    [309] Zhang Y, Zhang LD, Zhang CQ et al. Continuous resin refilling and hydrogen bond synergistically assisted 3D structural color printing. Nat Commun 13, 7095 (2022). doi: 10.1038/s41467-022-34866-6

    CrossRef Google Scholar

    [310] Demirörs AF, Poloni E, Chiesa M et al. Three-dimensional printing of photonic colloidal glasses into objects with isotropic structural color. Nat Commun 13, 4397 (2022). doi: 10.1038/s41467-022-32060-2

    CrossRef Google Scholar

    [311] Xue J, Yin XW, Xue LL et al. Self-growing photonic composites with programmable colors and mechanical properties. Nat Commun 13, 7823 (2022). doi: 10.1038/s41467-022-35555-0

    CrossRef Google Scholar

    [312] Wang WH, Wang L, Wang LY et al. Bio-inspired colorful selective solar absorber. Sol Energy Mater Sol Cells 276, 113076 (2024). doi: 10.1016/j.solmat.2024.113076

    CrossRef Google Scholar

    [313] Xu ZY, Niu WQ, Liu Y et al. 31.38 Gb/s GaN-based LED array visible light communication system enhanced with V-pit and sidewall quantum well structure. Opto-Electron Sci 2, 230005 (2023). doi: 10.29026/oes.2023.230005

    CrossRef Google Scholar

    [314] Liang CL, Deng LG, Dai Q et al. Single-celled multifunctional metasurfaces merging structural-color nanoprinting and holography. Opt Express 29, 10737–10748 (2021). doi: 10.1364/OE.420831

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(19)

Tables(2)

Article Metrics

Article views() PDF downloads() Cited by()

Access History
Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint