Citation: | Li H, Zhao CH, Li J et al. Spin-dependent amplitude and phase modulation with multifold interferences via single-layer diatomic all-silicon metasurfaces. Opto-Electron Sci 4, 240025 (2025). doi: 10.29026/oes.2025.240025 |
[1] | Yu NF, Genevet P, Kats MA et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science 334, 333–337 (2011). doi: 10.1126/science.1210713 |
[2] | Ding F, Yang YQ, Bozhevolnyi SI. Dynamic metasurfaces using phase-change chalcogenides. Adv Opt Mater 7, 1801709 (2019). doi: 10.1002/adom.201801709 |
[3] | Guo YH, Pu MB, Zhang F et al. Classical and generalized geometric phase in electromagnetic metasurfaces. Photonics Insights 1, R03 (2022). doi: 10.3788/PI.2022.R03 |
[4] | Chen MLN, Jiang LJ, Sha WEI. Orbital angular momentum generation and detection by geometric-phase based metasurfaces. Appl Sci 8, 362 (2018). doi: 10.3390/app8030362 |
[5] | Falci G, Fazio R, Palma GM et al. Detection of geometric phases in superconducting nanocircuits. Nature 407, 355–358 (2000). doi: 10.1038/35030052 |
[6] | Mead CA. The geometric phase in molecular systems. Rev Mod Phys 64, 51–85 (1992). doi: 10.1103/RevModPhys.64.51 |
[7] | Jisha CP, Nolte S, Alberucci A. Geometric phase in optics: from wavefront manipulation to waveguiding. Laser Photonics Rev 15, 2100003 (2021). doi: 10.1002/lpor.202100003 |
[8] | Chen P, Wei BY, Hu W et al. Liquid-crystal-mediated geometric phase: from transmissive to broadband reflective planar optics. Adv Mater 32, 1903665 (2020). doi: 10.1002/adma.201903665 |
[9] | Hariharan P. The geometric phase. Prog Opt 48, 149–201 (2005). |
[10] | Pancharatnam S. Generalized theory of interference and its applications. Proc Indian Acad Sci Sect A 44, 398–417 (1956). doi: 10.1007/BF03046095 |
[11] | Cohen E, Larocque H, Bouchard F et al. Geometric phase from aharonov–bohm to pancharatnam–berry and beyond. Nat Rev Phys 1, 437–449 (2019). doi: 10.1038/s42254-019-0071-1 |
[12] | Xie X, Pu MB, Jin JJ et al. Generalized pancharatnam-berry phase in rotationally symmetric meta-atoms. Phys Rev Lett 126, 183902 (2021). doi: 10.1103/PhysRevLett.126.183902 |
[13] | Yuan XY, Xu Q, Lang YH et al. Tailoring spatiotemporal dynamics of plasmonic vortices. Opto-Electron Adv 6, 220133 (2023). doi: 10.29026/oea.2023.220133 |
[14] | Guo YH, Pu MB, Zhao ZY et al. Merging geometric phase and plasmon retardation phase in continuously shaped metasurfaces for arbitrary orbital angular momentum generation. ACS Photonics 3, 2022–2029 (2016). doi: 10.1021/acsphotonics.6b00564 |
[15] | Guo YH, Zhang SC, Pu MB et al. Spin-decoupled metasurface for simultaneous detection of spin and orbital angular momenta via momentum transformation. Light Sci Appl 10, 63 (2021). doi: 10.1038/s41377-021-00497-7 |
[16] | Luo XG, Li X, Pu MB et al. Symmetric and asymmetric photonic spin-orbit interaction in metasurfaces. Prog Quantum Electron 79, 100344 (2021). doi: 10.1016/j.pquantelec.2021.100344 |
[17] | Wang Z, Li SQ, Zhang XQ et al. Excite spoof surface plasmons with tailored wavefronts using high-efficiency terahertz metasurfaces. Adv Sci 7, 2000982 (2020). doi: 10.1002/advs.202000982 |
[18] | Wang Z, Yao Y, Pan WK et al. Bifunctional manipulation of terahertz waves with high-efficiency transmissive dielectric metasurfaces. Adv Sci 10, 2205499 (2023). doi: 10.1002/advs.202205499 |
[19] | Nagatsuma T, Ducournau G, Renaud CC. Advances in terahertz communications accelerated by photonics. Nat Photonics 10, 371–379 (2016). doi: 10.1038/nphoton.2016.65 |
[20] | Hui XN, Zheng SL, Hu YP et al. Ultralow reflectivity spiral phase plate for generation of millimeter-wave OAM beam. IEEE Antennas Wireless Propag Lett 14, 966–969 (2015). doi: 10.1109/LAWP.2014.2387431 |
[21] | Zhang F, Guo YH, Pu MB et al. Meta-optics empowered vector visual cryptography for high security and rapid decryption. Nat Commun 14, 1946 (2023). doi: 10.1038/s41467-023-37510-z |
[22] | Nagatsuma T, Horiguchi S, Minamikata Y et al. Terahertz wireless communications based on photonics technologies. Opt Express 21, 23736–23747 (2013). doi: 10.1364/OE.21.023736 |
[23] | Yang YH, Yamagami Y, Yu XB et al. Terahertz topological photonics for on-chip communication. Nat Photonics 14, 446–451 (2020). doi: 10.1038/s41566-020-0618-9 |
[24] | Dragoman D, Dragoman M. Terahertz fields and applications. Prog Quantum Electron 28, 1–66 (2004). doi: 10.1016/S0079-6727(03)00058-2 |
[25] | Chen HT, Padilla WJ, Zide JMO et al. Active terahertz metamaterial devices. Nature 444, 597–600 (2006). doi: 10.1038/nature05343 |
[26] | Samizadeh Nikoo M, Matioli E. Electronic metadevices for terahertz applications. Nature 614, 451–455 (2023). doi: 10.1038/s41586-022-05595-z |
[27] | Luo XG. Principles of electromagnetic waves in metasurfaces. Sci China Phys Mech Astron 58, 594201 (2015). doi: 10.1007/s11433-015-5688-1 |
[28] | Huang C, Zhang CL, Yang JN et al. Reconfigurable metasurface for multifunctional control of electromagnetic waves. Adv Opt Mater 5, 1700485 (2017). doi: 10.1002/adom.201700485 |
[29] | Luo XG. Subwavelength optical engineering with metasurface waves. Adv Opt Mater 6, 1701201 (2018). doi: 10.1002/adom.201701201 |
[30] | Zhang XY, Li Q, Liu FF et al. Controlling angular dispersions in optical metasurfaces. Light Sci Appl 9, 76 (2020). doi: 10.1038/s41377-020-0313-0 |
[31] | He Q, Sun SL, Xiao SY et al. High-efficiency metasurfaces: principles, realizations, and applications. Adv Opt Mater 6, 1800415 (2018). doi: 10.1002/adom.201800415 |
[32] | Jia M, Wang Z, Li HT et al. Efficient manipulations of circularly polarized terahertz waves with transmissive metasurfaces. Light Sci Appl 8, 16 (2019). doi: 10.1038/s41377-019-0127-0 |
[33] | Badloe T, Kim Y, Kim J et al. Bright-field and edge-enhanced imaging using an electrically tunable dual-mode metalens. ACS Nano 17, 14678–14685 (2023). doi: 10.1021/acsnano.3c02471 |
[34] | Liu XY, Zhang JC, Leng BR et al. Edge enhanced depth perception with binocular meta-lens. Opto-Electron Sci 3, 230033 (2024). doi: 10.29026/oes.2024.230033 |
[35] | Li HL, Wen JS, Gao S et al. Switchable optical trapping based on vortex-pair beams generated by a polarization-multiplexed dielectric metasurface. Nanoscale 15, 17364–17372 (2023). doi: 10.1039/D3NR04125E |
[36] | Bao YJ, Ni JC, Qiu CW. A minimalist single-layer metasurface for arbitrary and full control of vector vortex beams. Adv Mater 32, 1905659 (2020). doi: 10.1002/adma.201905659 |
[37] | Zheng CL, Li J, Liu JY et al. Creating longitudinally varying vector vortex beams with an all-dielectric metasurface. Laser Photonics Rev 16, 2200236 (2022). doi: 10.1002/lpor.202200236 |
[38] | He YL, Ye HP, Liu JM et al. Order-controllable cylindrical vector vortex beam generation by using spatial light modulator and cascaded metasurfaces. IEEE Photonics J 9, 6101710 (2017). |
[39] | Zhang YC, Liu WW, Gao J et al. Generating focused 3D perfect vortex beams by plasmonic metasurfaces. Adv Opt Mater 6, 1701228 (2018). doi: 10.1002/adom.201701228 |
[40] | Nan T, Zhao H, Guo JY et al. Generation of structured light beams with polarization variation along arbitrary spatial trajectories using tri-layer metasurfaces. Opto-Electron Sci 3, 230052 (2024). |
[41] | Liu MZ, Zhu WQ, Huo PC et al. Multifunctional metasurfaces enabled by simultaneous and independent control of phase and amplitude for orthogonal polarization states. Light Sci Appl 10, 107 (2021). doi: 10.1038/s41377-021-00552-3 |
[42] | Cai T, Tang SW, Wang GM et al. High-performance bifunctional metasurfaces in transmission and reflection geometries. Adv Opt Mater 5, 1600506 (2017). doi: 10.1002/adom.201600506 |
[43] | Badloe T, Seong J, Rho J. Trichannel spin-selective metalenses. Nano Lett 23, 6958–6965 (2023). doi: 10.1021/acs.nanolett.3c01588 |
[44] | Asad A, Kim J, Khaliq HS et al. Spin-isolated ultraviolet-visible dynamic meta-holographic displays with liquid crystal modulators. Nanoscale Horiz 8, 759–766 (2023). doi: 10.1039/D2NH00555G |
[45] | Deng ZL, Deng JH, Zhuang X et al. Diatomic metasurface for vectorial holography. Nano Lett 18, 2885–2892 (2018). doi: 10.1021/acs.nanolett.8b00047 |
[46] | Liang Y, Lin H, Koshelev K et al. Full-stokes polarization perfect absorption with diatomic metasurfaces. Nano Lett 21, 1090–1095 (2021). doi: 10.1021/acs.nanolett.0c04456 |
[47] | Li H, Zheng CL, Xu H et al. Diatomic terahertz metasurfaces for arbitrary-to-circular polarization conversion. Nanoscale 14, 12856–12865 (2022). doi: 10.1039/D2NR03483B |
[48] | Gao S, Zhou CY, Yue WJ et al. Efficient all-dielectric diatomic metasurface for linear polarization generation and 1-Bit phase control. ACS Appl Mater Interfaces 13, 14497–14506 (2021). doi: 10.1021/acsami.1c00967 |
[49] | Feng C, He T, Shi YZ et al. Diatomic metasurface for efficient six-channel modulation of jones matrix. Laser Photonics Rev 17, 2200955 (2023). doi: 10.1002/lpor.202200955 |
[50] | Khaliq HS, Kim I, Kim J et al. Manifesting simultaneous optical spin conservation and spin isolation in diatomic metasurfaces. Adv Opt Mater 9, 2002002 (2021). doi: 10.1002/adom.202002002 |
[51] | Wang Y, Yue WJ, Gao S. Dielectric diatomic metasurface-assisted versatile bifunctional polarization conversions and incidence-polarization-secured meta-image. Opt Express 31, 29900–29911 (2023). doi: 10.1364/OE.498108 |
[52] | Cheng JQ, Li ZC, Choi DY et al. Spin-selective full and subtle light intensity manipulation with diatomic metasurfaces. Adv Opt Mater 11, 2202329 (2023). doi: 10.1002/adom.202202329 |
[53] | Zhang F, Pu MB, Li X et al. All-dielectric metasurfaces for simultaneous giant circular asymmetric transmission and wavefront shaping based on asymmetric photonic spin–orbit interactions. Adv Funct Mater 27, 1704295 (2017). doi: 10.1002/adfm.201704295 |
[54] | Ji JT, Wang ZZ, Sun JC et al. Metasurface-enabled on-chip manipulation of higher-order poincaré sphere beams. Nano Lett 23, 2750–2757 (2023). doi: 10.1021/acs.nanolett.3c00021 |
[55] | Wang S, Wen S, Deng ZL et al. Metasurface-based solid poincaré sphere polarizer. Phys Rev Lett 130, 123801 (2023). doi: 10.1103/PhysRevLett.130.123801 |
[56] | Liu MZ, Huo PC, Zhu WQ et al. Broadband generation of perfect Poincaré beams via dielectric spin-multiplexed metasurface. Nat Commun 12, 2230 (2021). doi: 10.1038/s41467-021-22462-z |
[57] | Bai GD, Ma Q, Li RQ et al. Spin-symmetry breaking through metasurface geometric phases. Phys Rev Appl 12, 044042 (2019). doi: 10.1103/PhysRevApplied.12.044042 |
[58] | Dai AL, Fang PP, Gao JM et al. Multifunctional metasurfaces enabled by multifold geometric phase interference. Nano Lett 23, 5019–5026 (2023). doi: 10.1021/acs.nanolett.3c00881 |
[59] | Gao S, Park CS, Lee SS et al. All-dielectric metasurfaces for simultaneously realizing polarization rotation and wavefront shaping of visible light. Nanoscale 11, 4083–4090 (2019). doi: 10.1039/C9NR00187E |
[60] | Nguyen A, Hugonin JP, Coutrot AL et al. Large circular dichroism in the emission from an incandescent metasurface. Optica 10, 232–238 (2023). doi: 10.1364/OPTICA.480292 |
[61] | Basiri A, Chen XH, Bai J et al. Nature-inspired chiral metasurfaces for circular polarization detection and full-Stokes polarimetric measurements. Light Sci Appl 8, 78 (2019). doi: 10.1038/s41377-019-0184-4 |
[62] | Huang YJ, Xie X, Pu MB et al. Dual-functional metasurface toward giant linear and circular dichroism. Adv Opt Mater 8, 1902061 (2020). doi: 10.1002/adom.201902061 |
[63] | Wang S, Deng ZL, Wang YJ et al. Arbitrary polarization conversion dichroism metasurfaces for all-in-one full Poincaré sphere polarizers. Light Sci Appl 10, 24 (2021). doi: 10.1038/s41377-021-00468-y |
[64] | Gao S, Park CS, Zhou CY et al. Twofold polarization-selective all-dielectric trifoci metalens for linearly polarized visible light. Adv Opt Mater 7, 1900883 (2019). doi: 10.1002/adom.201900883 |
[65] | Xu YH, Zhang HF, Li Q et al. Generation of terahertz vector beams using dielectric metasurfaces via spin-decoupled phase control. Nanophotonics 9, 3393–3402 (2020). doi: 10.1515/nanoph-2020-0112 |
[66] | Li J, Lu XG, Li H et al. Racemic dielectric metasurfaces for arbitrary terahertz polarization rotation and wavefront manipulation. Opto-Electron Adv 7, 240075 (2024). doi: 10.29026/oea.2024.240075 |
[67] | Liu WY, Jiang XH, Xu Q et al. All-dielectric terahertz metasurfaces for multi-dimensional multiplexing and demultiplexing. Laser Photonics Rev 18, 2301061 (2024). doi: 10.1002/lpor.202301061 |
[68] | Shan X, Deng LG, Dai Q et al. Silicon-on-insulator based multifunctional metasurface with simultaneous polarization and geometric phase controls. Opt Express 28, 26359–26369 (2020). doi: 10.1364/OE.402064 |
[69] | Lee KT, Taghinejad M, Yan JH et al. Electrically biased silicon metasurfaces with magnetic mie resonance for tunable harmonic generation of light. ACS Photonics 6, 2663–2670 (2019). doi: 10.1021/acsphotonics.9b01398 |
[70] | Huang GQ, Wu DX, Luo JW et al. Generalizing the Gerchberg-Saxton algorithm for retrieving complex optical transmission matrices. Photonics Res 9, 34–42 (2021). doi: 10.1364/PRJ.406010 |
[71] | Arbabi E, Kamali SM, Arbabi A et al. Vectorial holograms with a dielectric metasurface: ultimate polarization pattern generation. ACS Photonics 6, 2712–2718 (2019). doi: 10.1021/acsphotonics.9b00678 |
(a) Working principle of the proposed design under orthogonal circularly polarized THz beam illumination with spin-selective properties. (b) The assembly process of the metamolecule consists of the stepwise superposition of a pair of HWP meta-atoms with a phase difference of 90°. (c) Four parametric conditions with classical geometric phase modulation, pure phase modulation with spin selectivity, pure amplitude modulation with spin selectivity, and complex amplitude modulation with spin selectivity, respectively.
(a) Refractive index of high-resistance silicon and wave vectors in the working frequency band. The HWP meta-atoms selected for the organization of the metamolecule, denoted as (b) Meta_1 and (c) Meta_2, have a constant phase difference δ=π/2, respectively. (d) Normalized magnetic field distributions collected within the xoz and yoz planes, respectively, corresponding to a pair of HWP meta-atoms Meta_1 and Meta_2.
(a) Amplitude and (b) phase delay corresponding to geometric phase modulation obtained by scanning the parameter factor β, including LCP→LCP, LCP→RCP, RCP→LCP, and RCP→RCP channels. (c) GS algorithm flow used to perform THz hologram imaging, (d) target image, (e) processed image. (f) Phase distribution corresponding to the target image. (g) THz hologram images in the LCP→RCP and (h) RCP→LCP channels obtained by utilizing the time-domain solver.
(a) Sample I obtained by utilizing the ICP etching technique when α = π/4, β = 0, and γ = 0. (b) THz TDS system for performing sample measurement tasks. (c) Simulation and (d) experimental results of transmitted polarization conversion for two spins when α = π/4, β = 0, and γ = 0. (e) AT spectra containing both simulation and experimental results. (f) Amplitude, (g) phase delay, and (h) AT parameter corresponding to spin-dependent pure phase modulation obtained by scanning the parameter factor β.
(a) Spiral phase distributions embedded in the Z1=5 mm and Z2=7 mm planes. (b) Sample II obtained by utilizing the ICP etching technique. (c) Simulation and (d) experimental results extracted in different planes along the propagation direction, including the electric field intensity and phase distribution. (e) THz near-field detection system for capturing the focal field distribution. (f) The mode purity calculated in the Z1 and Z2 planes, respectively.
(a) Amplitude and (b) phase shift corresponding to spin-dependent pure amplitude modulation obtained by scanning the parameter factor β. (c) The extracted amplitudes within the LCP→RCP channel and the calculated AT parameters at intervals of Δβ = 9°, respectively. (d) Top view of the six metamolecules selected for performing pure amplitude shaping. (e) The electric field distribution |ERL| corresponding to THz near-field imaging extracted over a finite distance from 1.2 mm to 1.5 mm along the z-direction.
(a) Amplitude and (b) phase shift corresponding to spin-dependent pure amplitude modulation obtained by scanning the parameter factor β, including LCP→LCP, RCP→LCP, LCP→RCP and RCP→RCP channels. (c) Sample III and Sample IV obtained by utilizing the ICP etching technique. (d) Electric field distribution at the focal plane of the assembled meta-lens when β is equal to 0° and 90°, respectively, including simulation and experimental results. (e) Normalized amplitude profiles extracted at the focal plane along the x-direction, corresponding to Sample III and Sample IV.