Gao H, Fan XH, Wang YX, Liu YC, Wang XG et al. Multi-foci metalens for spectra and polarization ellipticity recognition and reconstruction. Opto-Electron Sci 2, 220026 (2023). doi: 10.29026/oes.2023.220026
Citation: Gao H, Fan XH, Wang YX, Liu YC, Wang XG et al. Multi-foci metalens for spectra and polarization ellipticity recognition and reconstruction. Opto-Electron Sci 2, 220026 (2023). doi: 10.29026/oes.2023.220026

Article Open Access

Multi-foci metalens for spectra and polarization ellipticity recognition and reconstruction

More Information
  • Multispectral and polarized focusing and imaging are key functions that are vitally important for a broad range of optical applications. Conventional techniques generally require multiple shots to unveil desired optical information and are implemented via bulky multi-pass systems or mechanically moving parts that are difficult to integrate into compact and integrated optical systems. Here, a design of ultra-compact transversely dispersive metalens capable of both spectrum and polarization ellipticity recognition and reconstruction in just a single shot is demonstrated with both coherent and incoherent light. Our design is well suited for integrated and high-speed optical information analysis and can significantly reduce the size and weight of conventional devices while simplifying the process of collecting optical information, thereby promising for various applications, including machine vision, minimized spectrometers, material characterization, remote sensing, and other areas which require comprehensive optical analysis.
  • 加载中
  • [1] Tanré D, Bréon FM, Deuzé JL, Dubovik O, Ducos F et al. Remote sensing of aerosols by using polarized, directional and spectral measurements within the A-Train: the PARASOL mission. Atmos Meas Tech 4, 1383–1395 (2011). doi: 10.5194/amt-4-1383-2011

    CrossRef Google Scholar

    [2] Yuen PWT, Richardson M. An introduction to hyperspectral imaging and its application for security, surveillance and target acquisition. Imaging Sci J 58, 241–253 (2010). doi: 10.1179/174313110X12771950995716

    CrossRef Google Scholar

    [3] Liang HD. Advances in multispectral and hyperspectral imaging for archaeology and art conservation. Appl Phys A 106, 309–323 (2012). doi: 10.1007/s00339-011-6689-1

    CrossRef Google Scholar

    [4] Levitt JA, Matthews DR, Ameer-Beg SM, Suhling K. Fluorescence lifetime and polarization-resolved imaging in cell biology. Curr Opin Biotechnol 20, 28–36 (2009). doi: 10.1016/j.copbio.2009.01.004

    CrossRef Google Scholar

    [5] Park H, Crozier KB. Multispectral imaging with vertical silicon nanowires. Sci Rep 3, 2460 (2013). doi: 10.1038/srep02460

    CrossRef Google Scholar

    [6] Zhao YQ, Yi C, Kong SG, Pan Q, Cheng YM. Multi-band Polarization Imaging and Applications (Springer, 2016).

    Google Scholar

    [7] Yu NF, Capasso F. Flat optics with designer metasurfaces. Nat Mater 13, 139–150 (2014). doi: 10.1038/nmat3839

    CrossRef Google Scholar

    [8] Dorrah AH, Capasso F. Tunable structured light with flat optics. Science 376, eabi6860 (2022). doi: 10.1126/science.abi6860

    CrossRef Google Scholar

    [9] Luo XG. Engineering Optics 2.0: A Revolution in Optical Theories, Materials, Devices and Systems (Springer, Singapore, 2019).

    Google Scholar

    [10] Zhang YX, Pu MB, Jin JJ, Lu XJ, Guo YH et al. Crosstalk-free achromatic full Stokes imaging polarimetry metasurface enabled by polarization-dependent phase optimization. Opto-Electron Adv 5, 220058 (2022). doi: 10.29026/oea.2022.220058

    CrossRef Google Scholar

    [11] Guo YH, Zhang SC, Pu MB, He Q, Jin JJ et al. Spin-decoupled metasurface for simultaneous detection of spin and orbital angular momenta via momentum transformation. Light Sci Appl 10, 63 (2021). doi: 10.1038/s41377-021-00497-7

    CrossRef Google Scholar

    [12] Zhang F, Pu MB, Li X, Gao P, Ma XL et al. All-dielectric metasurfaces for simultaneous giant circular asymmetric transmission and wavefront shaping based on asymmetric photonic spin–orbit interactions. Adv Funct Mater 27, 1704295 (2017). doi: 10.1002/adfm.201704295

    CrossRef Google Scholar

    [13] Xu MF, He Q, Pu MB, Zhang F, Li L et al. Emerging long-range order from a freeform disordered metasurface. Adv Mater 34, 2108709 (2022). doi: 10.1002/adma.202108709

    CrossRef Google Scholar

    [14] Gao H, Fan XH, Xiong W, Hong MH. Recent advances in optical dynamic meta-holography. Opto-Electron Adv 4, 210030 (2021). doi: 10.29026/oea.2021.210030

    CrossRef Google Scholar

    [15] Joo WJ, Kyoung J, Esfandyarpour M, Lee SH, Koo H et al. Metasurface-driven OLED displays beyond 10, 000 pixels per inch. Science 370, 459–463 (2020). doi: 10.1126/science.abc8530

    CrossRef Google Scholar

    [16] Li ZY, Lin P, Huang YW, Park JS, Chen WT et al. Meta-optics achieves RGB-achromatic focusing for virtual reality. Sci Adv 7, eabe4458 (2021). doi: 10.1126/sciadv.abe4458

    CrossRef Google Scholar

    [17] Zhao ZY, Pu MB, Gao H, Jin JJ, Li X et al. Multispectral optical metasurfaces enabled by achromatic phase transition. Sci Rep 5, 15781 (2015). doi: 10.1038/srep15781

    CrossRef Google Scholar

    [18] Gao H, Li Y, Chen LW, Jin JJ, Pu MB et al. Quasi-Talbot effect of orbital angular momentum beams for generation of optical vortex arrays by multiplexing metasurface design. Nanoscale 10, 666–671 (2018). doi: 10.1039/C7NR07873K

    CrossRef Google Scholar

    [19] Fang XY, Ren HR, Gu M. Orbital angular momentum holography for high-security encryption. Nat Photonics 14, 102–108 (2020). doi: 10.1038/s41566-019-0560-x

    CrossRef Google Scholar

    [20] Khorasaninejad M, Zhu W, Crozier KB. Efficient polarization beam splitter pixels based on a dielectric metasurface. Optica 2, 376–382 (2015). doi: 10.1364/OPTICA.2.000376

    CrossRef Google Scholar

    [21] Li X, Chen LW, Li Y, Zhang XH, Pu MB et al. Multicolor 3D meta-holography by broadband plasmonic modulation. Sci Adv 2, e1601102 (2016). doi: 10.1126/sciadv.1601102

    CrossRef Google Scholar

    [22] Gao H, Wang YX, Fan XH, Jiao BZ, Li TA et al. Dynamic 3D meta-holography in visible range with large frame number and high frame rate. Sci Adv 6, eaba8595 (2020). doi: 10.1126/sciadv.aba8595

    CrossRef Google Scholar

    [23] Hu YQ, Luo XH, Chen YQ, Liu Q, Li X et al. 3D-Integrated metasurfaces for full-colour holography. Light Sci Appl 8, 86 (2019). doi: 10.1038/s41377-019-0198-y

    CrossRef Google Scholar

    [24] Lin RJ, Su VC, Wang SM, Chen MK, Chung TL et al. Achromatic metalens array for full-colour light-field imaging. Nat Nanotechnol 14, 227–231 (2019). doi: 10.1038/s41565-018-0347-0

    CrossRef Google Scholar

    [25] Hua X, Wang YJ, Wang SM, Zou XJ, Zhou Y et al. Ultra-compact snapshot spectral light-field imaging. Nat Commun 13, 2732 (2022). doi: 10.1038/s41467-022-30439-9

    CrossRef Google Scholar

    [26] Arbabi E, Kamali SM, Arbabi A, Faraon A. Full-stokes imaging polarimetry using dielectric metasurfaces. ACS Photonics 5, 3132–3140 (2018). doi: 10.1021/acsphotonics.8b00362

    CrossRef Google Scholar

    [27] Yang ZY, Wang ZK, Wang YX, Feng X, Zhao M et al. Generalized Hartmann-Shack array of dielectric metalens sub-arrays for polarimetric beam profiling. Nat Commun 9, 4607 (2018). doi: 10.1038/s41467-018-07056-6

    CrossRef Google Scholar

    [28] Rubin NA, D’Aversa G, Chevalier P, Shi ZJ, Chen WT et al. Matrix Fourier optics enables a compact full-Stokes polarization camera. Science 365, eaax1839 (2019). doi: 10.1126/science.aax1839

    CrossRef Google Scholar

    [29] Intaravanne Y, Chen XZ. Recent advances in optical metasurfaces for polarization detection and engineered polarization profiles. Nanophotonics 9, 1003–1014 (2020). doi: 10.1515/nanoph-2019-0479

    CrossRef Google Scholar

    [30] Yue Z, Li J, Li J, Zheng CL, Liu JY et al. Terahertz metasurface zone plates with arbitrary polarizations to a fixed polarization conversion. Opto-Electron Sci 1, 210014 (2022). doi: 10.29026/oes.2022.210014

    CrossRef Google Scholar

    [31] Li JT, Wang GC, Yue Z, Liu JY, Li J et al. Dynamic phase assembled terahertz metalens for reversible conversion between linear polarization and arbitrary circular polarization. Opto-Electron Adv 5, 210062 (2022). doi: 10.29026/oea.2022.210062

    CrossRef Google Scholar

    [32] Arbabi E, Arbabi A, Kamali SM, Horie Y, Faraon A. Multiwavelength metasurfaces through spatial multiplexing. Sci Rep 6, 32803 (2016). doi: 10.1038/srep32803

    CrossRef Google Scholar

    [33] Avayu O, Almeida E, Prior Y, Ellenbogen T. Composite functional metasurfaces for multispectral achromatic optics. Nat Commun 8, 14992 (2017). doi: 10.1038/ncomms14992

    CrossRef Google Scholar

    [34] Sun T, Hu JP, Zhu XJ, Xu F, Wang CH. Broadband single-chip full stokes polarization-spectral imaging based on all-dielectric spatial multiplexing metalens. Laser Photonics Rev 16, 2100650 (2022). doi: 10.1002/lpor.202100650

    CrossRef Google Scholar

    [35] Khorasaninejad M, Chen WT, Devlin RC, Oh J, Zhu AY et al. Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging. Science 352, 1190–1194 (2016). doi: 10.1126/science.aaf6644

    CrossRef Google Scholar

    [36] Gao H, Pu MB, Li X, Ma XL, Zhao ZY et al. Super-resolution imaging with a Bessel lens realized by a geometric metasurface. Opt Express 25, 13933–13943 (2017). doi: 10.1364/OE.25.013933

    CrossRef Google Scholar

    [37] Ni XJ, Ishii S, Kildishev AV, Shalaev VM. Ultra-thin, planar, Babinet-inverted plasmonic metalenses. Light Sci Appl 2, e72 (2013). doi: 10.1038/lsa.2013.28

    CrossRef Google Scholar

    [38] Wang SM, Wu PC, Su VC, Lai YC, Chen MK et al. A broadband achromatic metalens in the visible. Nat Nanotechnol 13, 227–232 (2018). doi: 10.1038/s41565-017-0052-4

    CrossRef Google Scholar

    [39] Wang YL, Fan QB, Xu T. Design of high efficiency achromatic metalens with large operation bandwidth using bilayer architecture. Opto-Electron Adv 4, 200008 (2021). doi: 10.29026/oea.2021.200008

    CrossRef Google Scholar

    [40] Zang XF, Ding HZ, Intaravanne Y, Chen L, Peng Y et al. A multi-foci metalens with polarization-rotated focal points. Laser & Photonics Reviews 13, 1900182 (2019).

    Google Scholar

    [41] Chen XZ, Chen M, Mehmood MQ, Wen DD, Yue FY et al. Longitudinal multifoci metalens for circularly polarized light. Adv Opt Mater 3, 1201–1206 (2015). doi: 10.1002/adom.201500110

    CrossRef Google Scholar

    [42] Chen K, Feng YJ, Monticone F, Zhao JM, Zhu B et al. A reconfigurable active Huygens’ metalens. Adv Mater 29, 1606422 (2017). doi: 10.1002/adma.201606422

    CrossRef Google Scholar

    [43] Wang W, Guo ZY, Zhou KY, Sun YX, Shen F et al. Polarization-independent longitudinal multi-focusing metalens. Opt Express 23, 29855–29866 (2015). doi: 10.1364/OE.23.029855

    CrossRef Google Scholar

    [44] Pan MY, Fu YF, Zheng MJ, Chen H, Zang YJ et al. Dielectric metalens for miniaturized imaging systems: progress and challenges. Light Sci Appl 11, 195 (2022). doi: 10.1038/s41377-022-00885-7

    CrossRef Google Scholar

  • Supplementary information for Multi-foci metalens for spectra and polarization ellipticity recognition and reconstruction
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(5)

Article Metrics

Article views(7759) PDF downloads(716) Cited by(0)

Access History
Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint