Xie YW, Hong SH, Yan H, Zhang CP, Zhang L et al. Low-loss chip-scale programmable silicon photonic processor. Opto-Electron Adv 6, 220030 (2023). doi: 10.29026/oea.2023.220030
Citation: Xie YW, Hong SH, Yan H, Zhang CP, Zhang L et al. Low-loss chip-scale programmable silicon photonic processor. Opto-Electron Adv 6, 220030 (2023). doi: 10.29026/oea.2023.220030

Article Open Access

Low-loss chip-scale programmable silicon photonic processor

More Information
  • These authors contributed equally to this work

  • Corresponding author: DX Dai, E-mail: dxdai@zju.edu.cn
  • Chip-scale programmable optical signal processors are often used to flexibly manipulate the optical signals for satisfying the demands in various applications, such as lidar, radar, and artificial intelligence. Silicon photonics has unique advantages of ultra-high integration density as well as CMOS compatibility, and thus makes it possible to develop large-scale programmable optical signal processors. The challenge is the high silicon waveguides propagation losses and the high calibration complexity for all tuning elements due to the random phase errors. In this paper, we propose and demonstrate a programmable silicon photonic processor for the first time by introducing low-loss multimode photonic waveguide spirals and low-random-phase-error Mach-Zehnder switches. The present chip-scale programmable silicon photonic processor comprises a 1×4 variable power splitter based on cascaded Mach-Zehnder couplers (MZCs), four Ge/Si photodetectors, four channels of thermally-tunable optical delaylines. Each channel consists of a continuously-tuning phase shifter based on a waveguide spiral with a micro-heater and a digitally-tuning delayline realized with cascaded waveguide-spiral delaylines and MZSs for 5.68 ps time-delay step. Particularly, these waveguide spirals used here are designed to be as wide as 2 µm, enabling an ultralow propagation loss of 0.28 dB/cm. Meanwhile, these MZCs and MZSs are designed with 2-µm-wide arm waveguides, and thus the random phase errors in the MZC/MZS arms are negligible, in which case the calibration for these MZSs/MZCs becomes easy and furthermore the power consumption for compensating the phase errors can be reduced greatly. Finally, this programmable silicon photonic processor is demonstrated successfully to verify a number of distinctively different functionalities, including tunable time-delay, microwave photonic beamforming, arbitrary optical signal filtering, and arbitrary waveform generation.
  • 加载中
  • [1] Chang WSC. RF Photonic Technology in Optical Fiber Links (Cambridge University Press, Cambridge, 2002).

    Google Scholar

    [2] Gauthier D. Slow light brings faster communications. Phys World 18, 30–32 (2005). doi: 10.1088/2058-7058/18/12/31

    CrossRef Google Scholar

    [3] Zhu C, Lu LJ, Shan WS, Xu WH, Zhou GQ et al. Silicon integrated microwave photonic beamformer. Optica 7, 1162–1170 (2020). doi: 10.1364/OPTICA.391521

    CrossRef Google Scholar

    [4] Khonina SN, Kazanskiy NL, Butt MA, Karpeev SV. Optical multiplexing techniques and their marriage for on-chip and optical fiber communication: a review. Opto-Electron Adv 5, 210127 (2022). doi: 10.29026/oea.2022.210127

    CrossRef Google Scholar

    [5] Lvovsky AI, Sanders BC, Tittel W. Optical quantum memory. Nat Photonics 3, 706–714 (2009). doi: 10.1038/nphoton.2009.231

    CrossRef Google Scholar

    [6] Vandoorne K, Mechet P, Van Vaerenbergh T, Fiers M, Morthier G et al. Experimental demonstration of reservoir computing on a silicon photonics chip. Nat Commun 5, 3541 (2014). doi: 10.1038/ncomms4541

    CrossRef Google Scholar

    [7] Yang L, Nie JS, Duan LZ. Dynamic optical sampling by cavity tuning and its application in lidar. Opt Express 21, 3850–3860 (2013). doi: 10.1364/OE.21.003850

    CrossRef Google Scholar

    [8] Xie YW, Zhuang LM, Lowery AJ. Picosecond optical pulse processing using a terahertz-bandwidth reconfigurable photonic integrated circuit. Nanophotonics 7, 837–852 (2018). doi: 10.1515/nanoph-2017-0113

    CrossRef Google Scholar

    [9] Thomson D, Zilkie A, Bowers JE, Komljenovic T, Reed GT et al. Roadmap on silicon photonics. J Opt 18, 073003 (2016). doi: 10.1088/2040-8978/18/7/073003

    CrossRef Google Scholar

    [10] Bogaerts W, Chrostowski L. Silicon photonics circuit design: methods, tools and challenges. Laser Photonics Rev 12, 1700237 (2018). doi: 10.1002/lpor.201700237

    CrossRef Google Scholar

    [11] Dai DX. Advanced passive silicon photonic devices with asymmetric waveguide structures. Proc IEEE 106, 2117–2143 (2018). doi: 10.1109/JPROC.2018.2822787

    CrossRef Google Scholar

    [12] Soref R. The past, present, and future of silicon photonics. IEEE J Sel Top Quantum Electron 12, 1678–1687 (2006). doi: 10.1109/JSTQE.2006.883151

    CrossRef Google Scholar

    [13] Moreira RL, Garcia J, Li WZ, Bauters J, Barton JS et al. Integrated ultra-low-loss 4-bit tunable delay for broadband phased array antenna applications. IEEE Photonics Technol Lett 25, 1165–1168 (2013). doi: 10.1109/LPT.2013.2261807

    CrossRef Google Scholar

    [14] Xie JY, Zhou LJ, Li ZX, Wang JT, Chen JP. Seven-bit reconfigurable optical true time delay line based on silicon integration. Opt Express 22, 22707–22715 (2014). doi: 10.1364/OE.22.022707

    CrossRef Google Scholar

    [15] Wang XY, Zhou LJ, Li RF, Xie JY, Lu LJ et al. Continuously tunable ultra-thin silicon waveguide optical delay line. Optica 4, 507–515 (2017). doi: 10.1364/OPTICA.4.000507

    CrossRef Google Scholar

    [16] Zheng PF, Wang CQ, Xu XM, Li J, Lin DD et al. A seven bit silicon optical true time delay line for Ka-band phased array antenna. IEEE Photonics J 11, 5501809 (2019). doi: 10.1109/JPHOT.2019.2927487

    CrossRef Google Scholar

    [17] Wang Y, Sun H, Khalil M, Dong W, Gasulla I et al. On-chip optical true time delay lines based on subwavelength grating waveguides. Opt Lett 46, 1405–1408 (2021). doi: 10.1364/OL.414477

    CrossRef Google Scholar

    [18] Sun H, Wang Y, Chen LR. Integrated discretely tunable optical delay line based on step-chirped subwavelength grating waveguide bragg gratings. J Lightwave Technol 38, 5551–5560 (2020). doi: 10.1109/JLT.2020.3017496

    CrossRef Google Scholar

    [19] Cvetojevic N, Jovanovic N, Lawrence J, Withford M, Bland-Hawthorn J. Developing arrayed waveguide grating spectrographs for multi-object astronomical spectroscopy. Opt Express 20, 2062–2072 (2012). doi: 10.1364/OE.20.002062

    CrossRef Google Scholar

    [20] Yariv A, Xu Y, Lee RK, Scherer A. Coupled-resonator optical waveguide: a proposal and analysis. Opt Lett 24, 711–713 (1999). doi: 10.1364/OL.24.000711

    CrossRef Google Scholar

    [21] Scheuer J, Poon JKS, Paloczi GT, Yariv A. Coupled resonator optical waveguides (CROW). Proc SPIE 5735, 52–59 (2005). doi: 10.1117/12.602589

    CrossRef Google Scholar

    [22] Cardenas J, Foster MA, Sherwood-Droz N, Poitras CB, Lira HLR et al. Wide-bandwidth continuously tunable optical delay line using silicon microring resonators. Opt Express 18, 26525–26534 (2010). doi: 10.1364/OE.18.026525

    CrossRef Google Scholar

    [23] Shan WS, Lu LJ, Wang XY, Zhou GQ, Liu YB et al. Broadband continuously tunable microwave photonic delay line based on cascaded silicon microrings. Opt Express 29, 3375–3385 (2021). doi: 10.1364/OE.416000

    CrossRef Google Scholar

    [24] Xie JY, Zhou LJ, Zou Z, Wang JT, Li XW et al. Continuously tunable reflective-type optical delay lines using microring resonators. Opt Express 22, 817–823 (2014). doi: 10.1364/OE.22.000817

    CrossRef Google Scholar

    [25] Wu BB, Yu Y, Xiong JB, Zhang XL. Silicon integrated interferometric optical gyroscope. Sci Rep 8, 8766 (2018). doi: 10.1038/s41598-018-27077-x

    CrossRef Google Scholar

    [26] Gundavarapu S, Belt M, Huffman TA, Tran MA, Komljenovic T et al. Interferometric optical gyroscope based on an integrated Si3N4 low-loss waveguide coil. J Lightwave Technol 36, 1185–1191 (2018). doi: 10.1109/JLT.2017.2765918

    CrossRef Google Scholar

    [27] Lowell JR, Parra E. Application of slow light: a DARPA perspective. Proc SPIE 5735, 80–86 (2005). doi: 10.1117/12.601706

    CrossRef Google Scholar

    [28] Mok JT, Eggleton BJ. Photonics: expect more delays. Nature 433, 811–812 (2005). doi: 10.1038/433811a

    CrossRef Google Scholar

    [29] Zhang L, Jie LL, Zhang M, Wang Y, Xie YW et al. Ultrahigh-Q silicon racetrack resonators. Photonics Res 8, 684–689 (2020). doi: 10.1364/PRJ.387816

    CrossRef Google Scholar

    [30] Griffith A, Cardenas J, Poitras CB, Lipson M. High quality factor and high confinement silicon resonators using etchless process. Opt Express 20, 21341–21345 (2012). doi: 10.1364/OE.20.021341

    CrossRef Google Scholar

    [31] Zheng PF, Xu XM, Lin DD, Liu PC, Hu GH et al. A wideband 1×4 optical beam-forming chip based on switchable optical delay lines for Ka-band phased array. Opt Commun 488, 126842 (2021). doi: 10.1016/j.optcom.2021.126842

    CrossRef Google Scholar

    [32] Dong P, Qian W, Liao SR, Liang H, Kung CC et al. Low loss shallow-ridge silicon waveguides. Opt Express 18, 14474–14479 (2010). doi: 10.1364/OE.18.014474

    CrossRef Google Scholar

    [33] Pérez-López D, López A, DasMahapatra P, Capmany J. Multipurpose self-configuration of programmable photonic circuits. Nat Commun 11, 6359 (2020). doi: 10.1038/s41467-020-19608-w

    CrossRef Google Scholar

    [34] Zhou HL, Zhao YH, Wang X, Gao DS, Dong JJ et al. Self-configuring and reconfigurable silicon photonic signal processor. ACS Photonics 7, 792–799 (2020). doi: 10.1021/acsphotonics.9b01673

    CrossRef Google Scholar

    [35] Barwicz T, Haus HA. Three-dimensional analysis of scattering losses due to sidewall roughness in microphotonic waveguides. J Lightwave Technol 23, 2719–2732 (2005). doi: 10.1109/JLT.2005.850816

    CrossRef Google Scholar

    [36] Song LJ, Li H, Dai DX. Mach-Zehnder silicon-photonic switch with low random phase errors. Opt Lett 46, 78–81 (2021). doi: 10.1364/OL.413724

    CrossRef Google Scholar

    [37] Ciminelli C, Passaro VMN, Dell'Olio F, Armenise MN. Three-dimensional modelling of scattering loss in InGaAsP/InP and silica-on-silicon bent waveguides. J Eur Opt Soc Rapid Publ 4, 09015 (2009). doi: 10.2971/jeos.2009.09015

    CrossRef Google Scholar

    [38] Bauters JF, Heck MJR, John D, Dai DX, Tien MC et al. Ultra-low-loss high-aspect-ratio Si3N4 waveguides. Opt Express 19, 3163–3174 (2011). doi: 10.1364/OE.19.003163

    CrossRef Google Scholar

    [39] Hong SH, Zhang L, Wang Y, Zhang M, Xie YW et al. Ultralow-loss compact silicon photonic waveguide spirals and delay lines. Photonics Res 10, 1–7 (2022). doi: 10.1364/PRJ.437726

    CrossRef Google Scholar

    [40] Jiang XH, Wu H, Dai DX. Low-loss and low-crosstalk multimode waveguide bend on silicon. Opt Express 26, 17680–17689 (2018). doi: 10.1364/OE.26.017680

    CrossRef Google Scholar

    [41] Souza MCMM, Grieco A, Frateschi NC, Fainman Y. Fourier transform spectrometer on silicon with thermo-optic non-linearity and dispersion correction. Nat Commun 9, 665 (2018). doi: 10.1038/s41467-018-03004-6

    CrossRef Google Scholar

    [42] Dong P, Qian W, Liang H, Shafiiha R, Feng DZ et al. Thermally tunable silicon racetrack resonators with ultralow tuning power. Opt Express 18, 20298–20304 (2010). doi: 10.1364/OE.18.020298

    CrossRef Google Scholar

    [43] Masood A, Pantouvaki M, Lepage G, Verheyen P, Van Campenhout J et al. Comparison of heater architectures for thermal control of silicon photonic circuits. In 10th International Conference on Group IV Photonics 83–84 (IEEE, 2013); http://doi.org/10.1109/Group4.2013.6644437.

    Google Scholar

    [44] Choo G, Madsen CK, Palermo S, Entesari K. Automatic monitor-based tuning of an RF silicon photonic 1X4 asymmetric binary tree true-time-delay beamforming network. J Lightwave Technol 36, 5263–5275 (2018). doi: 10.1109/JLT.2018.2873199

    CrossRef Google Scholar

    [45] Duarte VC, Prata JG, Ribeiro CF, Nogueira RN, Winzer G et al. Modular coherent photonic-aided payload receiver for communications satellites. Nat Commun 10, 1984 (2019). doi: 10.1038/s41467-019-10077-4

    CrossRef Google Scholar

    [46] Volakis JL. Antenna Engineering Handbook 4th ed (McGraw-Hill Education, New York, 2007).

    Google Scholar

    [47] Balanis CA. Modern Antenna Handbook (John Wiley & Sons, Inc. , Hoboken, 2008).

    Google Scholar

    [48] Krylov AA, Sazonkin SG, Lazarev VA, Dvoretskiy DA, Leonov SO et al. Ultra-short pulse generation in the hybridly mode-locked erbium-doped all-fiber ring laser with a distributed polarizer. Laser Phys Lett 12, 065001 (2015). doi: 10.1088/1612-2011/12/6/065001

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(14)

Tables(1)

Article Metrics

Article views(7944) PDF downloads(1396) Cited by(0)

Access History
Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint