Citation: | Kang DH, Heo HS, Yang YH et al. Liquid crystal-integrated metasurfaces for an active photonic platform. Opto-Electron Adv 7, 230216 (2024). doi: 10.29026/oea.2024.230216 |
[1] | So S, Mun J, Park J et al. Revisiting the design strategies for metasurfaces: fundamental physics, optimization, and beyond. Adv Mater 35, 2206399 (2023). doi: 10.1002/adma.202206399 |
[2] | Yang Y, Seong J, Choi M et al. Integrated metasurfaces for re-envisioning a near-future disruptive optical platform. Light Sci Appl 12, 152 (2023). doi: 10.1038/s41377-023-01169-4 |
[3] | Yang Y, Kang H, Jung C et al. Revisiting optical material platforms for efficient linear and nonlinear dielectric metasurfaces in the ultraviolet, visible, and infrared. ACS Photonics 10, 307–321 (2023). |
[4] | Zheng GX, Mühlenbernd H, Kenney M et al. Metasurface holograms reaching 80% efficiency. Nat Nanotechnol 10, 308–312 (2015). doi: 10.1038/nnano.2015.2 |
[5] | Ye WM, Zeuner F, Li X et al. Spin and wavelength multiplexed nonlinear metasurface holography. Nat Commun 7, 11930 (2016). doi: 10.1038/ncomms11930 |
[6] | Wen DD, Yue FY, Li GX et al. Helicity multiplexed broadband metasurface holograms. Nat Commun 6, 8241 (2015). doi: 10.1038/ncomms9241 |
[7] | Li LL, Cui TJ, Ji W et al. Electromagnetic reprogrammable coding-metasurface holograms. Nat Commun 8, 197 (2017). doi: 10.1038/s41467-017-00164-9 |
[8] | Naeem T, Kim J, Khaliq HS et al. Dynamic chiral metasurfaces for broadband phase-gradient holographic displays. Adv Opt Mater 11, 2370013 (2023). doi: 10.1002/adom.202370013 |
[9] | Khaliq HS, Kim J, Naeem T et al. Broadband chiro-optical effects for futuristic meta-holographic displays. Adv Opt Mater 10, 2201175 (2022). doi: 10.1002/adom.202201175 |
[10] | Kim J, Oh DK, Kim H et al. Metasurface holography reaching the highest efficiency limit in the visible via one-step nanoparticle-embedded-resin printing. Laser Photonics Rev 16, 2200098 (2022). doi: 10.1002/lpor.202200098 |
[11] | Ko B, Badloe T, Yang Y et al. Tunable metasurfaces via the humidity responsive swelling of single-step imprinted polyvinyl alcohol nanostructures. Nat Commun 13, 6256 (2022). doi: 10.1038/s41467-022-32987-6 |
[12] | Tseng ML, Semmlinger M, Zhang M et al. Vacuum ultraviolet nonlinear metalens. Sci Adv 8, eabn5644 (2022). doi: 10.1126/sciadv.abn5644 |
[13] | Yang F, Lin HI, Shalaginov MY et al. Reconfigurable parfocal zoom metalens. Adv Opt Mater 10, 2200721 (2022). doi: 10.1002/adom.202200721 |
[14] | Feng WB, Zhang JC, Wu QF et al. RGB achromatic metalens doublet for digital imaging. Nano Lett 22, 3969–3975 (2022). doi: 10.1021/acs.nanolett.2c00486 |
[15] | Baek S, Kim J, Kim Y et al. High numerical aperture RGB achromatic metalens in the visible. Photonics Res 10, B30–B39 (2022). doi: 10.1364/PRJ.470004 |
[16] | Cho H, Jeong H, Yang Y et al. Enhancement of luminous intensity emission from incoherent LED light sources within the detection angle of 10° using metalenses. Nanomaterials 12, 153 (2022). doi: 10.3390/nano12010153 |
[17] | Ren HR, Jang J, Li CH et al. An achromatic metafiber for focusing and imaging across the entire telecommunication range. Nat Commun 13, 4183 (2022). doi: 10.1038/s41467-022-31902-3 |
[18] | Ko B, Kim J, Yang Y et al. Humidity-responsive RGB-pixels via swelling of 3D nanoimprinted polyvinyl alcohol. Adv Sci 10, 2204469 (2023). doi: 10.1002/advs.202204469 |
[19] | Gu JT, Liu Y, Meng NN et al. Structural colors based on diamond metasurface for information encryption. Adv Opt Mater 11, 2202826 (2023). doi: 10.1002/adom.202202826 |
[20] | Khaidarov E, Eschimese D, Lai KH et al. Large-scale vivid metasurface color printing using advanced 12-in. immersion photolithography. Sci Rep 12, 14044 (2022). doi: 10.1038/s41598-022-18259-9 |
[21] | Kim J, Park C, Hahn JW. Metal–semiconductor–metal metasurface for multiband infrared stealth technology using camouflage color pattern in visible range. Adv Opt Mater 10, 2101930 (2022). doi: 10.1002/adom.202101930 |
[22] | Lu JL, Sain B, Georgi P et al. A versatile metasurface enabling superwettability for self-cleaning and dynamic color response. Adv Opt Mater 10, 2101781 (2022). doi: 10.1002/adom.202101781 |
[23] | Zhuang XL, Zhang W, Wang KM et al. Active terahertz beam steering based on mechanical deformation of liquid crystal elastomer metasurface. Light Sci Appl 12, 14 (2023). doi: 10.1038/s41377-022-01046-6 |
[24] | Kim SI, Park J, Jeong BG et al. Two-dimensional beam steering with tunable metasurface in infrared regime. Nanophotonics 11, 2719–2726 (2022). doi: 10.1515/nanoph-2021-0664 |
[25] | Tao J, You Q, Li ZL et al. Mass-manufactured beam-steering metasurfaces for high-speed full-duplex optical wireless-broadcasting communications. Adv Mater 34, 2106080 (2022). doi: 10.1002/adma.202106080 |
[26] | Wang SJ, Qin WT, Zhang S et al. Nanoengineered spintronic-metasurface terahertz emitters enable beam steering and full polarization control. Nano Lett 22, 10111–10119 (2022). doi: 10.1021/acs.nanolett.2c03906 |
[27] | Yu NF, Capasso F. Flat optics with designer metasurfaces. Nat Mater 13, 139–150 (2014). doi: 10.1038/nmat3839 |
[28] | Xie X, Pu MB, Jin JJ et al. Generalized pancharatnam-berry phase in rotationally symmetric meta-atoms. Phys Rev Lett 126, 183902 (2021). doi: 10.1103/PhysRevLett.126.183902 |
[29] | Balthasar Mueller JP, Rubin NA, Devlin RC et al. Metasurface polarization optics: independent phase control of arbitrary orthogonal states of polarization. Phys Rev Lett 118, 113901 (2017). doi: 10.1103/PhysRevLett.118.113901 |
[30] | Badloe T, Kim I, Kim Y et al. Electrically tunable bifocal metalens with diffraction-limited focusing and imaging at visible wavelengths. Adv Sci 8, 2102646 (2021). doi: 10.1002/advs.202102646 |
[31] | Liu XM, Zhao Q, Lan CW et al. Isotropic Mie resonance-based metamaterial perfect absorber. Appl Phys Lett 103, 031910 (2013). doi: 10.1063/1.4813914 |
[32] | Bi K, Guo YS, Liu XM et al. Magnetically tunable Mie resonance-based dielectric metamaterials. Sci Rep 4, 7001 (2014). doi: 10.1038/srep07001 |
[33] | Liu CX, Rybin MV, Mao P et al. Disorder-immune photonics based on Mie-resonant dielectric metamaterials. Phys Rev Lett 123, 163901 (2019). doi: 10.1103/PhysRevLett.123.163901 |
[34] | Ratni B, Merzouk WA, De Lustrac A et al. Design of phase-modulated metasurfaces for beam steering in Fabry–Perot cavity antennas. IEEE Antennas Wirel Propag Lett 16, 1401–1404 (2017). doi: 10.1109/LAWP.2016.2639463 |
[35] | Zhang L, Wan X, Liu S et al. Realization of low scattering for a high-gain Fabry–Perot antenna using coding metasurface. IEEE Trans Antennas Propag 65, 3374–3383 (2017). doi: 10.1109/TAP.2017.2700874 |
[36] | Anzan-Uz-Zaman M, Song K, Lee DG et al. A novel approach to Fabry–Pérot-resonance-based lens and demonstrating deep-subwavelength imaging. Sci Rep 10, 10769 (2020). doi: 10.1038/s41598-020-67409-4 |
[37] | Saba A, Tavakol MR, Karimi-Khoozani P et al. Two-dimensional edge detection by guided mode resonant metasurface. IEEE Photonics Technol Lett 30, 853–856 (2018). doi: 10.1109/LPT.2018.2820045 |
[38] | Han S, Rybin MV, Pitchappa P et al. Guided-mode resonances in all-dielectric terahertz metasurfaces. Adv Opt Mater 8, 1900959 (2020). doi: 10.1002/adom.201900959 |
[39] | Kupriianov AS, Xu Y, Sayanskiy A et al. Metasurface engineering through bound states in the continuum. Phys Rev Appl 12, 014024 (2019). doi: 10.1103/PhysRevApplied.12.014024 |
[40] | Koshelev K, Tang YT, Li KF et al. Nonlinear metasurfaces governed by bound states in the continuum. ACS Photonics 6, 1639–1644 (2019). doi: 10.1021/acsphotonics.9b00700 |
[41] | Melik-Gaykazyan E, Koshelev K, Choi JH et al. From Fano to Quasi-BIC resonances in individual dielectric nanoantennas. Nano Lett 21, 1765–1771 (2021). doi: 10.1021/acs.nanolett.0c04660 |
[42] | Colburn S, Zhan AL, Majumdar A. Metasurface optics for full-color computational imaging. Sci Adv 4, eaar2114 (2018). doi: 10.1126/sciadv.aar2114 |
[43] | Lee C, Chang G, Kim J et al. Concurrent optimization of diffraction fields from binary phase mask for three-dimensional nanopatterning. ACS Photonics 10, 919–927 (2023). doi: 10.3390/photonics10080919 |
[44] | Farmani A. Three-dimensional FDTD analysis of a nanostructured plasmonic sensor in the near-infrared range. J Opt Soc Am B 36, 401–407 (2019). doi: 10.1364/JOSAB.36.000401 |
[45] | Smy TJ, Stewart SA, Rahmeier JGN et al. FDTD simulation of dispersive metasurfaces with Lorentzian surface susceptibilities. IEEE Access 8, 83027–83040 (2020). doi: 10.1109/ACCESS.2020.2992656 |
[46] | Jeong TI, Oh DK, Kim S et al. Deterministic nanoantenna array design for stable plasmon-enhanced harmonic generation. Nanophotonics 12, 619–629 (2023). doi: 10.1515/nanoph-2022-0365 |
[47] | Zhou M, Liu DJ, Belling SW et al. Inverse design of metasurfaces based on coupled-mode theory and adjoint optimization. ACS Photonics 8, 2265–2273 (2021). doi: 10.1021/acsphotonics.1c00100 |
[48] | So S, Yang Y, Son S et al. Highly suppressed solar absorption in a daytime radiative cooler designed by genetic algorithm. Nanophotonics 11, 2107–2115 (2022). doi: 10.1515/nanoph-2021-0436 |
[49] | Lewi T, Evans HA, Butakov NA et al. Ultrawide thermo-optic tuning of PbTe meta-atoms. Nano Lett 17, 3940–3945 (2017). doi: 10.1021/acs.nanolett.7b01529 |
[50] | Lewi T, Butakov NA, Schuller JA. Thermal tuning capabilities of semiconductor metasurface resonators. Nanophotonics 8, 331–338 (2019). doi: 10.1515/nanoph-2018-0178 |
[51] | Malek SC, Overvig AC, Shrestha S et al. Active nonlocal metasurfaces. Nanophotonics 10, 655–665 (2021). |
[52] | Zhao XG, Schalch J, Zhang JD et al. Electromechanically tunable metasurface transmission waveplate at terahertz frequencies. Optica 5, 303–310 (2018). doi: 10.1364/OPTICA.5.000303 |
[53] | Arbabi E, Arbabi A, Kamali SM et al. MEMS-tunable dielectric metasurface lens. Nat Commun 9, 812 (2018). doi: 10.1038/s41467-018-03155-6 |
[54] | Han ZY, Colburn S, Majumdar A et al. MEMS-actuated metasurface Alvarez lens. Microsyst Nanoeng 6, 79 (2020). doi: 10.1038/s41378-020-00190-6 |
[55] | Ee HS, Agarwal R. Tunable metasurface and flat optical zoom lens on a stretchable substrate. Nano Lett 16, 2818–2823 (2016). doi: 10.1021/acs.nanolett.6b00618 |
[56] | Gutruf P, Zou CJ, Withayachumnankul W et al. Mechanically tunable dielectric resonator metasurfaces at visible frequencies. ACS Nano 10, 133–141 (2016). doi: 10.1021/acsnano.5b05954 |
[57] | Malek SC, Ee HS, Agarwal R. Strain multiplexed metasurface holograms on a stretchable substrate. Nano Lett 17, 3641–3645 (2017). doi: 10.1021/acs.nanolett.7b00807 |
[58] | Fu XJ, Shi L, Yang J et al. Flexible terahertz beam manipulations based on liquid-crystal-integrated programmable metasurfaces. ACS Appl Mater Interfaces 14, 22287–22294 (2022). doi: 10.1021/acsami.2c02601 |
[59] | Zhang J, Wei XZ, Rukhlenko ID et al. Electrically tunable metasurface with independent frequency and amplitude modulations. ACS Photonics 7, 265–271 (2020). doi: 10.1021/acsphotonics.9b01532 |
[60] | Zhang J, Li ZF, Shao LD et al. Dynamical absorption manipulation in a graphene-based optically transparent and flexible metasurface. Carbon 176, 374–382 (2021). doi: 10.1016/j.carbon.2021.01.137 |
[61] | Yao Y, Shankar R, Kats MA et al. Electrically tunable metasurface perfect absorbers for ultrathin mid-infrared optical modulators. Nano Lett 14, 6526–6532 (2014). doi: 10.1021/nl503104n |
[62] | Weiss A, Frydendahl C, Bar-David J et al. Tunable metasurface using thin-film lithium niobate in the telecom regime. ACS Photonics 9, 605–612 (2022). |
[63] | Shcherbakov MR, Liu S, Zubyuk VV et al. Ultrafast all-optical tuning of direct-gap semiconductor metasurfaces. Nat Commun 8, 17 (2017). doi: 10.1038/s41467-017-00019-3 |
[64] | Isić G, Sinatkas G, Zografopoulos DC et al. Electrically tunable metal–semiconductor–metal terahertz metasurface modulators. IEEE J Sel Top Quantum Electron 25, 8500108 (2019). |
[65] | Scalari G, Maissen C, Cibella S et al. High quality factor, fully switchable terahertz superconducting metasurface. Appl Phys Lett 105, 261104 (2014). doi: 10.1063/1.4905199 |
[66] | Ustinov AV. Experiments with tunable superconducting metamaterials. IEEE Trans Terahertz Sci Technol 5, 22–26 (2015). |
[67] | Tao H, Strikwerda AC, Fan K et al. Reconfigurable terahertz metamaterials. Phys Rev Lett 103, 147401 (2009). doi: 10.1103/PhysRevLett.103.147401 |
[68] | Zhu WM, Liu AQ, Zhang XM et al. Switchable magnetic metamaterials using micromachining processes. Adv Mater 23, 1792–1796 (2011). doi: 10.1002/adma.201004341 |
[69] | De Gennes PG, Prost J. The Physics of Liquid Crystals (Clarendon Press, Oxford, 1993). |
[70] | Basiri A, Rafique MZE, Bai J et al. Ultrafast low-pump fluence all-optical modulation based on graphene-metal hybrid metasurfaces. Light Sci Appl 11, 102 (2022). doi: 10.1038/s41377-022-00787-8 |
[71] | Chen XQ, Zhang JF, Wen CC et al. Optical nonlinearity and non-reciprocal transmission of graphene integrated metasurface. Carbon 173, 126–134 (2021). doi: 10.1016/j.carbon.2020.10.076 |
[72] | Kim Y, Wu PC, Sokhoyan R et al. Phase modulation with electrically tunable vanadium dioxide phase-change metasurfaces. Nano Lett 19, 3961–3968 (2019). doi: 10.1021/acs.nanolett.9b01246 |
[73] | Zhang YF, Fowler C, Liang JH et al. Electrically reconfigurable non-volatile metasurface using low-loss optical phase-change material. Nat Nanotechnol 16, 661–666 (2021). doi: 10.1038/s41565-021-00881-9 |
[74] | Hui Y, Gomez-Diaz JS, Qian ZY et al. Plasmonic piezoelectric nanomechanical resonator for spectrally selective infrared sensing. Nat Commun 7, 11249 (2016). doi: 10.1038/ncomms11249 |
[75] | Cui T, Bai BF, Sun HB. Tunable metasurfaces based on active materials. Adv Funct Mater 29, 1806692 (2019). doi: 10.1002/adfm.201806692 |
[76] | Tsilipakos O, Tasolamprou AC, Pitilakis A et al. Toward intelligent metasurfaces: the progress from globally tunable metasurfaces to software-defined metasurfaces with an embedded network of controllers. Adv Opt Mater 8, 2000783 (2020). doi: 10.1002/adom.202000783 |
[77] | Badloe T, Lee J, Seong J et al. Tunable metasurfaces: the path to fully active nanophotonics. Adv Photonics Res 2, 2000205 (2021). doi: 10.1002/adpr.202000205 |
[78] | Abdelraouf OAM, Wang ZY, Liu HL et al. Recent advances in tunable metasurfaces: materials, design, and applications. ACS Nano 16, 13339–13369 (2022). doi: 10.1021/acsnano.2c04628 |
[79] | Jeon N, Noh J, Jung C et al. Electrically tunable metasurfaces: from direct to indirect mechanisms. New J Phys 24, 075001 (2022). doi: 10.1088/1367-2630/ac7c84 |
[80] | Ko B, Jeon N, Kim J et al. Hydrogels for active photonics. Microsyst Nanoeng 10, 1 (2024). doi: 10.1038/s41378-023-00609-w |
[81] | Li JX, Yu P, Zhang S et al. Electrically-controlled digital metasurface device for light projection displays. Nat Commun 11, 3574 (2020). doi: 10.1038/s41467-020-17390-3 |
[82] | Fan CY, Chuang TJ, Wu KH et al. Electrically modulated varifocal metalens combined with twisted nematic liquid crystals. Opt Express 28, 10609–10617 (2020). doi: 10.1364/OE.386563 |
[83] | Collings PJ, Patel JS. Handbook of Liquid Crystal Research (Oxford University Press, New York, 1997). |
[84] | Chu F, Tian LL, Li R et al. Adaptive nematic liquid crystal lens array with resistive layer. Liq Cryst 47, 563–571 (2020). doi: 10.1080/02678292.2019.1662502 |
[85] | Dolan JA, Cai HG, Delalande L et al. Broadband liquid crystal tunable metasurfaces in the visible: liquid crystal inhomogeneities across the metasurface parameter space. ACS Photonics 8, 567–575 (2021). |
[86] | Mitov M. Cholesteric liquid crystals in living matter. Soft Matter 13, 4176–4209 (2017). doi: 10.1039/C7SM00384F |
[87] | Priestly E. Introduction to Liquid Crystals (Springer Science & Business Media, 2012). |
[88] | Andrienko D. Introduction to liquid crystals. J Mol Liq 267, 520–541 (2018). doi: 10.1016/j.molliq.2018.01.175 |
[89] | Wu Q, Zhang HX, Jia DG et al. Recent development of tunable optical devices based on liquid. Molecules 27, 8025 (2022). doi: 10.3390/molecules27228025 |
[90] | Berreman DW. Solid surface shape and the alignment of an adjacent nematic liquid crystal. Phys Rev Lett 28, 1683–1686 (1972). doi: 10.1103/PhysRevLett.28.1683 |
[91] | Geary JM, Goodby JW, Kmetz AR et al. The mechanism of polymer alignment of liquid‐crystal materials. J Appl Phys 62, 4100–4108 (1987). doi: 10.1063/1.339124 |
[92] | Yaroshchuk O, Reznikov Y. Photoalignment of liquid crystals: basics and current trends. J Mater Chem 22, 286–300 (2012). doi: 10.1039/C1JM13485J |
[93] | Hariharan P. Optical Holography: Principles, Techniques and Applications 2nd ed (Cambridge University Press, Cambridge, 1996). |
[94] | Collier R. Optical Holography (Elsevier, Amsterdam, 2013). |
[95] | Blanche PA, Bablumian A, Voorakaranam R et al. Holographic three-dimensional telepresence using large-area photorefractive polymer. Nature 468, 80–83 (2010). doi: 10.1038/nature09521 |
[96] | He JW, Dong T, Chi BH et al. Meta-hologram for three-dimensional display in terahertz waveband. Microelectron Eng 220, 111151 (2020). doi: 10.1016/j.mee.2019.111151 |
[97] | Genevet P, Capasso F. Holographic optical metasurfaces: a review of current progress. Rep Prog Phys 78, 024401 (2015). doi: 10.1088/0034-4885/78/2/024401 |
[98] | Gao H, Fan XH, Xiong W et al. Recent advances in optical dynamic meta-holography. Opto-Electron Adv 4, 210030–210030 (2021). doi: 10.29026/oea.2021.210030 |
[99] | Yoon G, Tanaka T, Zentgraf T et al. Recent progress on metasurfaces: applications and fabrication. J Phys D:Appl Phys 54, 383002 (2021). doi: 10.1088/1361-6463/ac0faa |
[100] | Zhu SQ, Xu ZT, Zhang H et al. Liquid crystal integrated metadevice for reconfigurable hologram displays and optical encryption. Opt Express 29, 9553–9564 (2021). doi: 10.1364/OE.419914 |
[101] | Wan CW, Li Z, Wan S et al. Electric-driven meta-optic dynamics for simultaneous near-/far-field multiplexing display. Adv Funct Mater 32, 2110592 (2022). doi: 10.1002/adfm.202110592 |
[102] | Tang DL, Shao ZL, Xie X et al. Flat multifunctional liquid crystal elements through multi-dimensional information multiplexing. Opto-Electron Adv 6, 220063 (2023). doi: 10.29026/oea.2023.220063 |
[103] | Xie X, Du WJ, Shao ZL et al. Multichannel binary-image and holographic display based on planar liquid crystal devices. Laser Photonics Rev 17, 2300193 (2023). doi: 10.1002/lpor.202300193 |
[104] | Kim I, Ansari MA, Mehmood MQ et al. Stimuli-responsive dynamic metaholographic displays with designer liquid crystal modulators. Adv Mater 32, 2004664 (2020). doi: 10.1002/adma.202004664 |
[105] | Psaltis D, Quake SR, Yang C. Developing optofluidic technology through the fusion of microfluidics and optics. Nature 442, 381–386 (2006). doi: 10.1038/nature05060 |
[106] | Cuennet JG, Vasdekis AE, De Sio L et al. Optofluidic modulator based on peristaltic nematogen microflows. Nat Photon 5, 234–238 (2011). doi: 10.1038/nphoton.2011.18 |
[107] | Naveed MA, Kim J, Javed I et al. Novel spin-decoupling strategy in liquid crystal-integrated metasurfaces for interactive metadisplays. Adv Opt Mater 10, 2200196 (2022). doi: 10.1002/adom.202200196 |
[108] | Kim I, Jang J, Kim G et al. Pixelated bifunctional metasurface-driven dynamic vectorial holographic color prints for photonic security platform. Nat Commun 12, 3614 (2021). doi: 10.1038/s41467-021-23814-5 |
[109] | Yang Y, Kim H, Badloe T et al. Gap-plasmon-driven spin angular momentum selection of chiral metasurfaces for intensity-tunable metaholography working at visible frequencies. Nanophotonics 11, 4123–4133 (2022). doi: 10.1515/nanoph-2022-0075 |
[110] | Asad A, Kim J, Khaliq HS et al. Spin-isolated ultraviolet-visible dynamic meta-holographic displays with liquid crystal modulators. Nanoscale Horiz 8, 759–766 (2023). doi: 10.1039/D2NH00555G |
[111] | Lee GY, Hong JY, Hwang S et al. Metasurface eyepiece for augmented reality. Nat Commun 9, 4562 (2018). doi: 10.1038/s41467-018-07011-5 |
[112] | Shi YY, Wan CW, Dai CJ et al. Augmented reality enabled by on-chip meta-holography multiplexing. Laser Photonics Rev 16, 2100638 (2022). doi: 10.1002/lpor.202100638 |
[113] | Luo Y, Chu CH, Vyas S et al. Varifocal metalens for optical sectioning fluorescence microscopy. Nano Lett 21, 5133–5142 (2021). doi: 10.1021/acs.nanolett.1c01114 |
[114] | Wang YJ, Chen QM, Yang WH et al. High-efficiency broadband achromatic metalens for near-IR biological imaging window. Nat Commun 12, 5560 (2021). doi: 10.1038/s41467-021-25797-9 |
[115] | Afridi A, Canet-Ferrer J, Philippet L et al. Electrically driven varifocal silicon metalens. ACS Photonics 5, 4497–4503 (2018). doi: 10.1021/acsphotonics.8b00948 |
[116] | Shalaginov MY, An SS, Zhang YF et al. Reconfigurable all-dielectric metalens with diffraction-limited performance. Nat Commun 12, 1225 (2021). doi: 10.1038/s41467-021-21440-9 |
[117] | Qin S, Xu N, Huang H et al. Near-infrared thermally modulated varifocal metalens based on the phase change material Sb2S3. Opt Express 29, 7925–7934 (2021). doi: 10.1364/OE.420014 |
[118] | Chen WT, Zhu AY, Sanjeev V et al. A broadband achromatic metalens for focusing and imaging in the visible. Nat Nanotechnol 13, 220–226 (2018). doi: 10.1038/s41565-017-0034-6 |
[119] | Wang SM, Wu PC, Su VC et al. A broadband achromatic metalens in the visible. Nat Nanotechnol 13, 227–232 (2018). doi: 10.1038/s41565-017-0052-4 |
[120] | Zhou HP, Chen L, Shen F et al. Broadband achromatic metalens in the midinfrared range. Phys Rev Appl 11, 024066 (2019). doi: 10.1103/PhysRevApplied.11.024066 |
[121] | Arbabi A, Arbabi E, Kamali SM et al. Miniature optical planar camera based on a wide-angle metasurface doublet corrected for monochromatic aberrations. Nat Commun 7, 13682 (2016). doi: 10.1038/ncomms13682 |
[122] | Groever B, Chen WT, Capasso F. Meta-lens doublet in the visible region. Nano Lett 17, 4902–4907 (2017). doi: 10.1021/acs.nanolett.7b01888 |
[123] | Engelberg J, Zhou C, Mazurski N et al. Near-IR wide-field-of-view Huygens metalens for outdoor imaging applications. Nanophotonics 9, 361–370 (2020). doi: 10.1515/nanoph-2019-0177 |
[124] | Shalaginov MY, An SS, Yang F et al. Single-element diffraction-limited fisheye metalens. Nano Lett 20, 7429–7437 (2020). doi: 10.1021/acs.nanolett.0c02783 |
[125] | Hu YQ, Ou XN, Zeng TB et al. Electrically tunable multifunctional polarization-dependent metasurfaces integrated with liquid crystals in the visible region. Nano Lett 21, 4554–4562 (2021). doi: 10.1021/acs.nanolett.1c00104 |
[126] | Jin L, Dong ZG, Mei ST et al. Noninterleaved metasurface for (26-1) spin- and wavelength-encoded holograms. Nano Lett 18, 8016–8024 (2018). doi: 10.1021/acs.nanolett.8b04246 |
[127] | Bosch M, Shcherbakov MR, Won K et al. Electrically actuated varifocal lens based on liquid-crystal-embedded dielectric metasurfaces. Nano Lett 21, 3849–3856 (2021). doi: 10.1021/acs.nanolett.1c00356 |
[128] | Badloe T, Kim Y, Kim J et al. Bright-field and edge-enhanced imaging using an electrically tunable dual-mode metalens. ACS Nano 17, 14678–14685 (2023). doi: 10.1021/acsnano.3c02471 |
[129] | Wehr A, Lohr U. Airborne laser scanning—an introduction and overview. ISPRS J Photogramm Remote Sens 54, 68–82 (1999). doi: 10.1016/S0924-2716(99)00011-8 |
[130] | Knoernschild C, Kim C, Lu FP et al. Multiplexed broadband beam steering system utilizing high speed MEMS mirrors. Opt Express 17, 7233–7244 (2009). doi: 10.1364/OE.17.007233 |
[131] | Wang DK, Watkins C, Xie HK. MEMS mirrors for LiDAR: a review. Micromachines 11, 456 (2020). doi: 10.3390/mi11050456 |
[132] | He ZQ, Gou FW, Chen R et al. Liquid crystal beam steering devices: principles, recent advances, and future developments. Crystals 9, 292 (2019). doi: 10.3390/cryst9060292 |
[133] | Komar A, Paniagua-Domínguez R, Miroshnichenko A et al. Dynamic beam switching by liquid crystal tunable dielectric metasurfaces. ACS Photonics 5, 1742–1748 (2018). doi: 10.1021/acsphotonics.7b01343 |
[134] | Li SQ, Xu XW, Veetil RM et al. Phase-only transmissive spatial light modulator based on tunable dielectric metasurface. Science 364, 1087–1090 (2019). doi: 10.1126/science.aaw6747 |
[135] | Chung H, Miller OD. Tunable metasurface inverse design for 80% switching efficiencies and 144° angular deflection. ACS Photonics 7, 2236–2243 (2020). doi: 10.1021/acsphotonics.0c00787 |
[136] | Wu JB, Shen Z, Ge SJ et al. Liquid crystal programmable metasurface for terahertz beam steering. Appl Phys Lett 116, 131104 (2020). doi: 10.1063/1.5144858 |
[137] | Liu CX, Yang F, Fu XJ et al. Programmable manipulations of terahertz beams by transmissive digital coding metasurfaces based on liquid crystals. Adv Opt Mater 9, 2100932 (2021). doi: 10.1002/adom.202100932 |
[138] | Neubrech F, Duan XY, Liu N. Dynamic plasmonic color generation enabled by functional materials. Sci Adv 6, eabc2709 (2020). doi: 10.1126/sciadv.abc2709 |
[139] | Yang WH, Xiao SM, Song QH et al. All-dielectric metasurface for high-performance structural color. Nat Commun 11, 1864 (2020). doi: 10.1038/s41467-020-15773-0 |
[140] | Jang J, Badloe T, Yang Y et al. Spectral modulation through the hybridization of Mie-Scatterers and quasi-guided mode resonances: realizing full and gradients of structural color. ACS Nano 14, 15317–15326 (2020). doi: 10.1021/acsnano.0c05656 |
[141] | Jung C, Kim SJ, Jang J et al. Disordered-nanoparticle–based etalon for ultrafast humidity-responsive colorimetric sensors and anti-counterfeiting displays. Sci Adv 8, eabm8598 (2022). doi: 10.1126/sciadv.abm8598 |
[142] | Sun S, Yang WH, Zhang C et al. Real-time tunable colors from microfluidic reconfigurable all-dielectric metasurfaces. ACS Nano 12, 2151–2159 (2018). doi: 10.1021/acsnano.7b07121 |
[143] | Xie ZW, Yang JH, Vashistha V et al. Liquid-crystal tunable color filters based on aluminum metasurfaces. Opt Express 25, 30764–30770 (2017). doi: 10.1364/OE.25.030764 |
[144] | Lee Y, Park MK, Kim S et al. Electrical broad tuning of plasmonic color filter employing an asymmetric-lattice nanohole array of metasurface controlled by polarization rotator. ACS Photonics 4, 1954–1966 (2017). doi: 10.1021/acsphotonics.7b00249 |
[145] | Driencourt L, Federspiel F, Kazazis D et al. Electrically tunable multicolored filter using birefringent plasmonic resonators and liquid crystals. ACS Photonics 7, 444–453 (2020). doi: 10.1021/acsphotonics.9b01404 |
[146] | Franklin D, Frank R, Wu ST et al. Actively addressed single pixel full-colour plasmonic display. Nat Commun 8, 15209 (2017). doi: 10.1038/ncomms15209 |
[147] | Badloe T, Kim J, Kim I et al. Liquid crystal-powered Mie resonators for electrically tunable photorealistic color gradients and dark blacks. Light Sci Appl 11, 118 (2022). doi: 10.1038/s41377-022-00806-8 |
[148] | Yang Y, Yoon G, Park S et al. Revealing structural disorder in hydrogenated amorphous silicon for a low-loss photonic platform at visible frequencies. Adv Mater 33, 2005893 (2021). doi: 10.1002/adma.202005893 |
[149] | Zou CJ, Komar A, Fasold S et al. Electrically tunable transparent displays for visible light based on dielectric metasurfaces. ACS Photonics 6, 1533–1540 (2019). doi: 10.1021/acsphotonics.9b00301 |
[150] | Sharma M, Tal M, McDonnell C et al. Electrically and all-optically switchable nonlocal nonlinear metasurfaces. Sci Adv 9, eadh2353 (2023). doi: 10.1126/sciadv.adh2353 |
[151] | Ni YB, Chen C, Wen S et al. Computational spectropolarimetry with a tunable liquid crystal metasurface. eLight 2, 23 (2022). doi: 10.1186/s43593-022-00032-0 |
[152] | Zhao HJ, Fan F, Zhang TR et al. Dynamic terahertz anisotropy and chirality enhancement in liquid-crystal anisotropic dielectric metasurfaces. Photonics Res 10, 1097–1106 (2022). doi: 10.1364/PRJ.453082 |
[153] | Shen ZX, Zhou SH, Ge SJ et al. Liquid crystal enabled dynamic cloaking of terahertz Fano resonators. Appl Phys Lett 114, 041106 (2019). doi: 10.1063/1.5082224 |
[154] | Wang JW, Li K, He HL et al. Metasurface-enabled high-resolution liquid-crystal alignment for display and modulator applications. Laser Photonics Rev 16, 2100396 (2022). doi: 10.1002/lpor.202100396 |
[155] | Shih YH, Lin XY, Silalahi HM et al. Optically tunable terahertz metasurfaces using liquid crystal cells coated with photoalignment layers. Crystals 11, 1100 (2021). doi: 10.3390/cryst11091100 |
[156] | Badloe T, Mun J, Rho J. Metasurfaces-based absorption and reflection control: perfect absorbers and reflectors. J Nanomater 2017, 2361042 (2017). |
[157] | Alaee R, Albooyeh M, Rockstuhl C. Theory of metasurface based perfect absorbers. J Phys D Appl Phys 50, 503002 (2017). doi: 10.1088/1361-6463/aa94a8 |
[158] | Shrekenhamer D, Chen WC, Padilla WJ. Liquid crystal tunable metamaterial absorber. Phys Rev Lett 110, 177403 (2013). doi: 10.1103/PhysRevLett.110.177403 |
[159] | Isić G, Vasić B, Zografopoulos DC et al. Electrically tunable critically coupled terahertz metamaterial absorber based on nematic liquid crystals. Phys Rev Appl 3, 064007 (2015). doi: 10.1103/PhysRevApplied.3.064007 |
[160] | Yin ST, Xiao D, Liu JX et al. Reconfigurable chiral metasurface absorbers based on liquid crystals. IEEE Photonics J 10, 4600909 (2018). |
[161] | Yin ZP, Lu YJ, Xia TX et al. Electrically tunable terahertz dual-band metamaterial absorber based on a liquid crystal. RSC Adv 8, 4197–4203 (2018). doi: 10.1039/C7RA13047C |
[162] | Savo S, Shrekenhamer D, Padilla WJ. Liquid crystal metamaterial absorber spatial light modulator for THz applications. Adv Opt Mater 2, 275–279 (2014). doi: 10.1002/adom.201300384 |
[163] | Kim I, Kim WS, Kim K et al. Holographic metasurface gas sensors for instantaneous visual alarms. Sci Adv 7, eabe9943 (2021). doi: 10.1126/sciadv.abe9943 |
[164] | Li K, Wang JW, Cai WF et al. Electrically switchable, polarization-sensitive encryption based on aluminum nanoaperture arrays integrated with polymer-dispersed liquid crystals. Nano Lett 21, 7183–7190 (2021). doi: 10.1021/acs.nanolett.1c01947 |
[165] | Tang J, Wan S, Shi YY et al. Dynamic augmented reality display by layer-folded metasurface via electrical-driven liquid crystal. Adv Opt Mater 10, 2200418 (2022). doi: 10.1002/adom.202200418 |
[166] | Liu ZY, Zhang C, Zhu WQ et al. Compact stereo waveguide display based on a unidirectional polarization-multiplexed metagrating in-coupler. ACS Photonics 8, 1112–1119 (2021). doi: 10.1021/acsphotonics.0c01885 |
[167] | Mansha S, Moitra P, Xu XW et al. High resolution multispectral spatial light modulators based on tunable Fabry-Perot nanocavities. Light Sci Appl 11, 141 (2022). doi: 10.1038/s41377-022-00832-6 |
[168] | Zhu ZX, Wen YH, Li JQ et al. Metasurface-enabled polarization-independent LCoS spatial light modulator for 4K resolution and beyond. Light Sci Appl 12, 151 (2023). doi: 10.1038/s41377-023-01202-6 |
[169] | Kowerdziej R, Wróbel J, Kula P. Ultrafast electrical switching of nanostructured metadevice with dual-frequency liquid crystal. Sci Rep 9, 20367 (2019). doi: 10.1038/s41598-019-55656-z |
[170] | Sharma M, Michaeli L, Haim DB et al. Liquid crystal switchable surface lattice resonances in plasmonic metasurfaces. ACS Photonics 9, 2702–2712 (2022). doi: 10.1021/acsphotonics.2c00453 |
[171] | Xiao D, Liu YJ, Yin ST et al. Liquid-crystal-loaded chiral metasurfaces for reconfigurable multiband spin-selective light absorption. Opt Express 26, 25305–25314 (2018). doi: 10.1364/OE.26.025305 |
[172] | Chen P, Ma LL, Hu W et al. Chirality invertible superstructure mediated active planar optics. Nat Commun 10, 2518 (2019). doi: 10.1038/s41467-019-10538-w |
[173] | Zheng ZG, Hu HL, Zhang ZP et al. Digital photoprogramming of liquid-crystal superstructures featuring intrinsic chiral photoswitches. Nat Photonics 16, 226–234 (2022). |
[174] | Rocco D, Carletti L, Caputo R et al. Switching the second harmonic generation by a dielectric metasurface via tunable liquid crystal. Opt Express 28, 12037–12046 (2020). doi: 10.1364/OE.386776 |
[175] | Rocco D, Zilli A, Ferraro A et al. Tunable second harmonic generation by an all-dielectric diffractive metasurface embedded in liquid crystals. New J Phys 24, 045002 (2022). doi: 10.1088/1367-2630/ac61d2 |
[176] | Liu YD, Song JL, Zhao WX et al. Dynamic thermal camouflage via a liquid-crystal-based radiative metasurface. Nanophotonics 9, 855–863 (2020). doi: 10.1515/nanoph-2019-0485 |
[177] | Zhang ZC, You Z, Chu DP. Fundamentals of phase-only liquid crystal on silicon (LCOS) devices. Light Sci Appl 3, e213–e213 (2014). doi: 10.1038/lsa.2014.94 |
[178] | Chen HMP, Yang JP, Yen HT et al. Pursuing high quality phase-only liquid crystal on silicon (LCoS) devices. Appl Sci 8, 2323 (2018). doi: 10.3390/app8112323 |
[179] | Isomae Y, Shibata Y, Ishinabe T et al. Design of 1-μm-pitch liquid crystal spatial light modulators having dielectric shield wall structure for holographic display with wide field of view. Opt Rev 24, 165–176 (2017). doi: 10.1007/s10043-017-0316-0 |
[180] | Jiao MZ, Ge ZB, Song Q et al. Alignment layer effects on thin liquid crystal cells. Appl Phys Lett 92, 061102 (2008). doi: 10.1063/1.2841642 |
[181] | Izdebskaya YV, Yang ZW, Liu MK et al. Magnetic tuning of liquid crystal dielectric metasurfaces. Nanophotonics 11, 3895–3900 (2022). doi: 10.1515/nanoph-2022-0101 |
[182] | Veetil RM, Xu XW, Dontabhaktuni J et al. Nanoantenna induced liquid crystal alignment for high performance tunable metasurface. Nanophotonics (2023),doi: 10.1515/nanoph-2023-0446. |
[183] | Akselrod GM, Yang Y, Bowen P. Plasmonic surface-scattering elements and metasurfaces for optical beam steering. U. S. Patent, 10451800 (2019). |
[184] | Akselrod GM, Yang Y, Bowen P. Tunable liquid crystal metasurfaces. U. S. Patent, 10665953 (2020). |
[185] | So S, Mun J, Rho J. Simultaneous inverse design of materials and structures via deep learning: demonstration of dipole resonance engineering using core–shell nanoparticles. ACS Appl Mater Interfaces 11, 24264–24268 (2019). doi: 10.1021/acsami.9b05857 |
[186] | So S, Badloe T, Noh J et al. Deep learning enabled inverse design in nanophotonics. Nanophotonics 9, 1041–1057 (2020). doi: 10.1515/nanoph-2019-0474 |
[187] | So S, Kim J, Badloe T et al. Multicolor and 3D holography generated by inverse-designed single-cell metasurfaces. Adv Mater 35, 2208520 (2023). doi: 10.1002/adma.202208520 |
[188] | Lee C, Lee S, Seong J et al. Inverse-designed metasurfaces for highly saturated transmissive colors. J Opt Soc Am B 41, 151–158 (2024). doi: 10.1364/JOSAB.505444 |
[189] | Yao YH, Liu H, Wang YF et al. Nanoimprint lithography: an enabling technology for nanophotonics. Appl Phys A 121, 327–333 (2015). doi: 10.1007/s00339-015-9438-z |
[190] | Oh DK, Lee T, Ko B et al. Nanoimprint lithography for high-throughput fabrication of metasurfaces. Front Optoelectron 14, 229–251 (2021). doi: 10.1007/s12200-021-1121-8 |
[191] | Kang H, Lee D, Yang Y et al. Emerging low-cost, large-scale photonic platforms with soft lithography and self-assembly. Photonics Insights 2, R04 (2023). doi: 10.3788/PI.2023.R04 |
[192] | Seong J, Jeon Y, Yang Y et al. Cost-effective and environmentally friendly mass manufacturing of optical metasurfaces towards practical applications and commercialization. Int J Precis Eng Manuf-Green Technol (2023),doi:10.1007/s40684-023-00580-x. |
[193] | Kim J, Seong J, Kim W et al. Scalable manufacturing of high-index atomic layer–polymer hybrid metasurfaces for metaphotonics in the visible. Nat Mater 22, 474–481 (2023). doi: 10.1038/s41563-023-01485-5 |
[194] | Choi H, Kim J, Kim W et al. Realization of high aspect ratio metalenses by facile nanoimprint lithography using water-soluble stamps. PhotoniX 4, 18 (2023). doi: 10.1186/s43074-023-00096-2 |
[195] | Moon SW, Kim J, Park C et al. Wafer-scale manufacturing of near-infrared metalenses. Laser Photonics Rev 2300929 (2024),doi: 10.1002/lpor.202300929. |
[196] | Oran D, Rodriques SG, Gao RX et al. 3D nanofabrication by volumetric deposition and controlled shrinkage of patterned scaffolds. Science 362, 1281–1285 (2018). doi: 10.1126/science.aau5119 |
[197] | Jung W, Jung YH, Pikhitsa PV et al. Three-dimensional nanoprinting via charged aerosol jets. Nature 592, 54–59 (2021). doi: 10.1038/s41586-021-03353-1 |
[198] | Wen XW, Zhang BY, Wang WP et al. 3D-printed silica with nanoscale resolution. Nat Mater 20, 1506–1511 (2021). doi: 10.1038/s41563-021-01111-2 |
[199] | Kim WG, Kim H, Ko B et al. Freestanding, freeform metamolecule fibers tailoring artificial optical magnetism. Small 19, 2303749 (2023). doi: 10.1002/smll.202303749 |
[200] | Kim WG, Kim SJ, Lee IH et al. Nanofountain pen for writing hybrid plasmonic architectures. Small Struct 5, 2300260 (2024). doi: 10.1002/sstr.202300260 |
Schematic diagram providing an overview of this review. LCs can be categorized into nematic, smectic, columnar, and cholesteric LC based on the alignment of the molecules. Recently, metasurfaces have been integrated with LCs to achieve tunability and this integrated optical platform can be applied to virtual reality (VR), augmented reality (AR), encryption, and sensors.
Tunable metaholograms with LC. (a) Dynamic metaholographic displays that respond to various external stimuli. The left image shows a voltage-responsive display, the middle image shows a heat-responsive display, and the right image shows a touch-responsive display. (b) An electrically-controlled DMSD for light projection. The left two images show the DMSD device and its working principle. The right two images show an SEM image of the DMSD and experimental results of the DMSD with independent control of seven electrodes each. (c) Schematic of the security platform using an electrically tunable vectorial holographic device. (d) Chiral metasurfaces integrated with LC enable precise control of hologram intensity, offering the ability to switch between fully "on" and "off" states. The top images show illustrations of the adjustable intensity of holograms utilizing chiral metasurfaces. Upon illumination of LCs with 45° linearly-polarized light, an output polarization state of RCP is observed at a voltage of 1.39 V, and a transition to LCP state occurs at a voltage of 1.18 V. The bottom images show the measured results when the applied voltages were (i) 1.39, (ii) 1.30, (iii) 1.24, and (iv) 1.18 V. (e) Schematic of the broadband metahologram operating in both the UV and visible regions. The image on the right shows the experimental results of the designed broadband metahologram. Figure reproduced with permission from: (a) ref.104, © 2020 John Wiley and Sons; (b) ref.81, (c) ref.108, (d) ref.109, under a Creative Commons Attribution 4.0 International License; (e) ref.110, © 2023 Royal Society of Chemistry.
Tunable metalenses combined with LCs. (a) Schematic of the varifocal metalens integrated with TN LCs designed by sweeping lengths and widths of the meta-atom. (b) Schematic of an LC-cell combined bifocal metalens. The right images were captured by using the bifocal metalens in each focal plane of f1 and f2 with LCP and RCP incident light, respectively. (c) Schematic of the electrically tunable platform using metasurface integrated with LCs. The right images show the demonstration of the electrically tunable metalens using the platform. Focusing and imaging were demonstrated at each focal plane at the target wavelength of 450, 532, and 635 nm. (d) A varifocal metalens encapsulated in an electrically biased LC cell. The focal length continuously varies by changing bias voltage between its “off” and “on” values. (e) Schematic of a tunable metalens switching from bright-field mode to edge-enhanced imaging mode depending on incident polarization beam. The middle images show captured images of the resolution target obtained through each mode for RGB wavelengths. The right images show captured images of biological samples by bright-field optical microscope (top), bright-field mode in metalens (middle), and edge-enhanced imaging mode in metalens (bottom). Figure reproduced with permission from: (a) ref.82, © 2020 Optica Publishing Group; (b) ref.30, under a Creative Commons Attribution 4.0 International License; (c) ref.125, (d) ref.127, © 2021 American Chemical Society; (e) ref.128, © 2023 American Chemical Society.
Metasurface-based dynamic beam steering devices combined with LCs. (a) The left images show the concept of a metasurface-based beam-switching device. It transmits light straight through in nematic state and deflects it at a fixed angle at isotropic state. The right shows 2D images and measured intensity of three main diffraction orders (0, +1, +2) for different temperatures. The total power of transmitted light varying with temperature is also measured. (b) The left image shows a three-level-addressing scheme of beam steering device with tunable deflection angle. The right image shows the concept of large aperture device with integration of active-matrix electrodes. (c) Schematic of LC-tunable metasurface using inverse design. A designed grating deflects incident light to the target angle in the opposite direction depending on the voltage “on” and “off” states. (d) The left image shows the schematic of a programmable metasurface performing THz beam steering. Shifting the applied coding sequence changes the beam deflection angle. The right image shows the measured and calculated distribution of the reflected beam for the applied five coding sequences at 672 GHz. (e) The left image shows the schematic of the digital coding metasurface using a MIM resonator and CASR pattern, performing various THz beam manipulation functions including dual beam steering. The middle images show the coding patterns and simulated 3D, and 2D scattering patterns for dual beam steering at 0.408 THz. The rightmost figure shows a comparison between the measured and simulated scattering patterns of the transmitted beam for five different coding sequences. Figure reproduced with permission from: (a) ref.133, © 2018 American Chemical Society; (b) ref.134, © 2019 The American Association for the Advancement of Science; (c) ref.135, © 2020 American Chemical Society; (d) ref.136, © 2020 AIP Publishing; (e) ref.137, © 2021 John Wiley and Sons.
Color generation metasurfaces combined with LCs. (a) The left images show a schematic of aluminum grating metasurface integrated with LC. The right images show experiment results of Al grating metasurface with incrementing the applied voltage from 0 V to 10 V. (b) Schematic of wide tuning range color filter and optical photographs of proposed structure for the initial voltage of 0 V and the saturated voltage of 5 V. (c) The left image shows a schematic of proposed color filter achieving a color coverage exceeding 70% of the sRGB color gamut. The right image shows the CIE chromaticity diagram of the transmitted colors for the proposed structure. (d) The left image shows a schematic of the LC plasmonic device producing full RGB color. The right image shows the CIE chromaticity diagram of the LC plasmonic device and that of the comparative standard. (e) The top image shows a schematic of tunable all-dielectric LC system. The bottom image shows experimental results with rotated subpixels and the CIE chromaticity diagram of the all-dielectric LC device. Under an LP axis of 90°, the intended primary color is generated, while at an LP axis of 0°, successful mixing of two colors is achieved. (f) The left image shows a schematic of the switchable transparent displays which can be turned on and off. The right image shows experimental images of the device at the applied voltage of 0 and 20 V. Figure reproduced with permission from: (a) ref.143, © 2017 Optica Publishing Group; (b) ref.144, © 2017 American Chemical Society; (c) ref.145, © 2020 American Chemical Society; (d) ref.146, (e) ref.147, under a Creative Commons Attribution 4.0 International License; (f) ref.149, © 2019 American Chemical Society.
Spectral tuning in the NIR and THz region using LC-combined metasurface. (a) The left image depicts a schematic of the nonlinear metasurface capable of electrically tuning nonlocal second-harmonic generation by combining LC, along with a SEM image. The right image illustrates the results of electrical switching for second-harmonic generation and the second-harmonic signal. (b) This image shows a simplified representation of computational spectropolarimetry using a tunable LC metasurface. When light with an unknown polarization and spectrum strikes the LC metasurface, the polarization and spectrum of the incident light can be computationally reconstructed based on the measured intensity of the reflected light. (c) The left image shows a schematic of the proposed system for electrically tunable anisotropy and chirality. The right image shows FDTD simulations of electric field distribution at γ=0°, 45°, and 90°, where γ represents the angle between the long axis of the LC molecule orientation and the x−y plane. (d) The left image displays a schematic of the demonstrated active Fano resonance cloaking system. The right image presents numerical simulations, measured transmission spectra, and corresponding phase spectra for incident waves in both x-polarization (red curve) and y-polarization (blue curve). (e) The left image shows a schematic of the proposed tunable LC-loaded metasurfaces. The right image shows experimental results based on the ratio of width to length. Figure reproduced with permission from: (a) ref.150, (b) ref.151, under a Creative Commons Attribution 4.0 International License; (c) ref.152, © 2022 Optica Publishing Group; (d) ref.153, © 2019 AIP Publishing; (e) ref.154, © 2021 John Wiley and Sons.
Various applications using LC-based metasurfaces. (a) Schematic of a gas-sensitive holographic sensor. The middle image shows proposed metasurfaces successfully combined with a curved surface. The right image demonstrates broadband properties with experimental results. (b) The left image illustrates a schematic of the proposed polarization-based encryption platform and possible cases based on polarization states. The right image shows the demonstrated encryption platform using this concept. (c) Schematic of dynamic AR system using layer-folded metasurface integrated with LC. The right image shows dynamically switchable holographic images superimposed on real-world scenes, by controlling the polarization beam with tunable LC platform. Figure reproduced with permission from: (a) ref.163, under a Creative Commons Attribution 4.0 International License; (b) ref.164, © 2021 American Chemical Society; (c) ref.165, © 2022 John Wiley and Sons.