Zhou CD, Huang Y, Yang YG et al. Streamlined photonic reservoir computer with augmented memory capabilities. Opto-Electron Adv 8, 240135 (2025). doi: 10.29026/oea.2025.240135
Citation: Zhou CD, Huang Y, Yang YG et al. Streamlined photonic reservoir computer with augmented memory capabilities. Opto-Electron Adv 8, 240135 (2025). doi: 10.29026/oea.2025.240135

Article Open Access

Streamlined photonic reservoir computer with augmented memory capabilities

More Information
  • Photonic platforms are gradually emerging as a promising option to encounter the ever-growing demand for artificial intelligence, among which photonic time-delay reservoir computing (TDRC) is widely anticipated. While such a computing paradigm can only employ a single photonic device as the nonlinear node for data processing, the performance highly relies on the fading memory provided by the delay feedback loop (FL), which sets a restriction on the extensibility of physical implementation, especially for highly integrated chips. Here, we present a simplified photonic scheme for more flexible parameter configurations leveraging the designed quasi-convolution coding (QC), which completely gets rid of the dependence on FL. Unlike delay-based TDRC, encoded data in QC-based RC (QRC) enables temporal feature extraction, facilitating augmented memory capabilities. Thus, our proposed QRC is enabled to deal with time-related tasks or sequential data without the implementation of FL. Furthermore, we can implement this hardware with a low-power, easily integrable vertical-cavity surface-emitting laser for high-performance parallel processing. We illustrate the concept validation through simulation and experimental comparison of QRC and TDRC, wherein the simpler-structured QRC outperforms across various benchmark tasks. Our results may underscore an auspicious solution for the hardware implementation of deep neural networks.
  • 加载中
  • [1] LeCun Y, Bengio Y, Hinton G. Deep learning. Nature 521, 436–444 (2015). doi: 10.1038/nature14539

    CrossRef Google Scholar

    [2] Saetchnikov AV, Tcherniavskaia EA, Saetchnikov VA et al. Deep-learning powered whispering gallery mode sensor based on multiplexed imaging at fixed frequency. Opto-Electron Adv 3, 200048 (2020). doi: 10.29026/oea.2020.200048

    CrossRef Google Scholar

    [3] Silver D, Huang A, Maddison CJ et al. Mastering the game of Go with deep neural networks and tree search. Nature 529, 484–489 (2016). doi: 10.1038/nature16961

    CrossRef Google Scholar

    [4] Jumper J, Evans R, Pritzel A et al. Highly accurate protein structure prediction with alphafold. Nature 596, 583–589 (2021). doi: 10.1038/s41586-021-03819-2

    CrossRef Google Scholar

    [5] Thompson NC, Greenewald K, Lee K et al. The computational limits of deep learning. arXiv preprint arXiv: 2007.05558, 2020. https://ar5iv.labs.arxiv.org/html/2007.05558

    Google Scholar

    [6] Yao P, Wu HQ, Gao B et al. Fully hardware-implemented memristor convolutional neural network. Nature 577, 641–646 (2020). doi: 10.1038/s41586-020-1942-4

    CrossRef Google Scholar

    [7] Zhong YN, Tang JS, Li XY et al. A memristor-based analogue reservoir computing system for real-time and power-efficient signal processing. Nat Electron 5, 672–681 (2022). doi: 10.1038/s41928-022-00838-3

    CrossRef Google Scholar

    [8] Chu M, Kim B, Park S et al. Neuromorphic hardware system for visual pattern recognition with memristor array and CMOS neuron. IEEE Trans Ind Electron 62, 2410–2419 (2015).

    Google Scholar

    [9] Torrejon J, Riou M, Araujo FA et al. Neuromorphic computing with nanoscale spintronic oscillators. Nature 547, 428–431 (2017). doi: 10.1038/nature23011

    CrossRef Google Scholar

    [10] Romera M, Talatchian P, Tsunegi S et al. Vowel recognition with four coupled spin-torque nano-oscillators. Nature 563, 230–234 (2018). doi: 10.1038/s41586-018-0632-y

    CrossRef Google Scholar

    [11] Grollier J, Querlioz D, Camsari KY et al. Neuromorphic spintronics. Nat Electron 3, 360–370 (2020). doi: 10.1038/s41928-019-0360-9

    CrossRef Google Scholar

    [12] Ashtiani F, Geers AJ, Aflatouni F. An on-chip photonic deep neural network for image classification. Nature 606, 501–506 (2022). doi: 10.1038/s41586-022-04714-0

    CrossRef Google Scholar

    [13] Xiang SY, Shi YC, Zhang YH et al. Photonic integrated neuro-synaptic core for convolutional spiking neural network. Opto-Electron Adv 6, 230140 (2023). doi: 10.29026/oea.2023.230140

    CrossRef Google Scholar

    [14] Shastri BJ, Tait AN, De Lima TF et al. Photonics for artificial intelligence and neuromorphic computing. Nat Photonics 15, 102–114 (2021). doi: 10.1038/s41566-020-00754-y

    CrossRef Google Scholar

    [15] Qi HX, Du ZC, Hu XY et al. High performance integrated photonic circuit based on inverse design method. Opto-Electron Adv 5, 210061 (2022). doi: 10.29026/oea.2022.210061

    CrossRef Google Scholar

    [16] Hamerly R, Bernstein L, Sludds A et al. Large-scale optical neural networks based on photoelectric multiplication. Phys Rev X 9, 021032 (2019).

    Google Scholar

    [17] Nakajima M, Inoue K, Tanaka K et al. Physical deep learning with biologically inspired training method: gradient-free approach for physical hardware. Nat Commun 13, 7847 (2022). doi: 10.1038/s41467-022-35216-2

    CrossRef Google Scholar

    [18] Marković D, Mizrahi A, Querlioz D et al. Physics for neuromorphic computing. Nat Rev Phys 2, 499–510 (2020). doi: 10.1038/s42254-020-0208-2

    CrossRef Google Scholar

    [19] Wright LG, Onodera T, Stein MM et al. Deep physical neural networks trained with backpropagation. Nature 601, 549–555 (2022). doi: 10.1038/s41586-021-04223-6

    CrossRef Google Scholar

    [20] Wang XZ, Cichos F. Harnessing synthetic active particles for physical reservoir computing. Nat Commun 15, 774 (2024). doi: 10.1038/s41467-024-44856-5

    CrossRef Google Scholar

    [21] Yaremkevich DD, Scherbakov AV, De Clerk L et al. On-chip phonon-magnon reservoir for neuromorphic computing. Nat Commun 14, 8296 (2023). doi: 10.1038/s41467-023-43891-y

    CrossRef Google Scholar

    [22] Xu XY, Tan MX, Corcoran B et al. 11 tops photonic convolutional accelerator for optical neural networks. Nature 589, 44–51 (2021). doi: 10.1038/s41586-020-03063-0

    CrossRef Google Scholar

    [23] Li CH, Du W, Huang YX et al. Photonic synapses with ultralow energy consumption for artificial visual perception and brain storage. Opto-Electron Adv 5, 210069 (2022).

    Google Scholar

    [24] Huang CR, Sorger VJ, Miscuglio M et al. Prospects and applications of photonic neural networks. Adv Phys X 7, 1981155 (2022).

    Google Scholar

    [25] Goodfellow I, Bengio Y, Courville A. Deep Learning (MIT, Cambridge, 2016).

    Google Scholar

    [26] Jaeger H. The “echo state” approach to analyzing and training recurrent neural networks (German National Research Center for Information Technology, Bonn, 2001).

    Google Scholar

    [27] Maass W, Natschläger T, Markram H. Real-time computing without stable states: a new framework for neural computation based on perturbations. Neural Comput 14, 2531–2560 (2002). doi: 10.1162/089976602760407955

    CrossRef Google Scholar

    [28] Appeltant L, Soriano MC, Van der Sande G et al. Information processing using a single dynamical node as complex system. Nat Commun 2, 468 (2011). doi: 10.1038/ncomms1476

    CrossRef Google Scholar

    [29] Van der Sande G, Brunner D, Soriano MC. Advances in photonic reservoir computing. Nanophotonics 6, 561–576 (2017). doi: 10.1515/nanoph-2016-0132

    CrossRef Google Scholar

    [30] Gauthier DJ, Bollt E, Griffith A et al. Next generation reservoir computing. Nat Commun 12, 5564 (2021). doi: 10.1038/s41467-021-25801-2

    CrossRef Google Scholar

    [31] Barbosa WAS, Gauthier DJ. Learning spatiotemporal chaos using next-generation reservoir computing. Chaos 32, 093137 (2022). doi: 10.1063/5.0098707

    CrossRef Google Scholar

    [32] Ortín S, Soriano MC, Pesquera L et al. A unified framework for reservoir computing and extreme learning machines based on a single time-delayed neuron. Sci Rep 5, 14945 (2015). doi: 10.1038/srep14945

    CrossRef Google Scholar

    [33] Huang GB, Zhu QY, Siew CK. Extreme learning machine: theory and applications. Neurocomputing 70, 489–501 (2006). doi: 10.1016/j.neucom.2005.12.126

    CrossRef Google Scholar

    [34] Estébanez I, Li S, Schwind J et al. 56 GBaud PAM-4 100 Km transmission system with photonic processing schemes. J Lightwave Technol 40, 55–62 (2022). doi: 10.1109/JLT.2021.3117921

    CrossRef Google Scholar

    [35] Skontranis M, Sarantoglou G, Sozos K et al. Multimode Fabry-Perot laser as a reservoir computing and extreme learning machine photonic accelerator. Neuromorph Comput Eng 3, 044003 (2023). doi: 10.1088/2634-4386/ad025b

    CrossRef Google Scholar

    [36] Pierangeli D, Marcucci G, Conti C. Photonic extreme learning machine by free-space optical propagation. Photonics Res 9, 1446–1454 (2021). doi: 10.1364/PRJ.423531

    CrossRef Google Scholar

    [37] Takano K, Sugano C, Inubushi M et al. Compact reservoir computing with a photonic integrated circuit. Opt Express 26, 29424–29439 (2018). doi: 10.1364/OE.26.029424

    CrossRef Google Scholar

    [38] Zeng QQ, Wu ZM, Yue DZ et al. Performance optimization of a reservoir computing system based on a solitary semiconductor laser under electrical-message injection. Appl Opt 59, 6932–6938 (2020). doi: 10.1364/AO.394999

    CrossRef Google Scholar

    [39] Phang S. Photonic reservoir computing enabled by stimulated Brillouin scattering. Opt Express 31, 22061–22074 (2023). doi: 10.1364/OE.489057

    CrossRef Google Scholar

    [40] Zhang JF, Ma BW, Zou WW. High-speed parallel processing with photonic feedforward reservoir computing. Opt Express 31, 43920–43933 (2023). doi: 10.1364/OE.505520

    CrossRef Google Scholar

    [41] Guo XX, Xiang SY, Zhang YH et al. Polarization multiplexing reservoir computing based on a VCSEL with polarized optical feedback. IEEE J Sel Top Quantum Electron 26, 1700109 (2020).

    Google Scholar

    [42] Squire LR. Memory and Brain (Oxford University Press, New York, 1987).

    Google Scholar

    [43] Gu JX, Wang ZH, Kuen J et al. Recent advances in convolutional neural networks. Pattern Recognit 77, 354–377 (2018). doi: 10.1016/j.patcog.2017.10.013

    CrossRef Google Scholar

    [44] Goldman MS. Memory without feedback in a neural network. Neuron 61, 621–634 (2009). doi: 10.1016/j.neuron.2008.12.012

    CrossRef Google Scholar

    [45] Lukoševičius M. A practical guide to applying echo state networks. In Montavon G, Orr GB, Müller KR. Neural Networks: Tricks of the Trade 659–686 (Springer, Berlin, 2012).

    Google Scholar

    [46] Lepri S, Giacomelli G, Politi A et al. High-dimensional chaos in delayed dynamical systems. Phys D Nonlinear Phenom 70, 235–249 (1994). doi: 10.1016/0167-2789(94)90016-7

    CrossRef Google Scholar

    [47] Martin-Regalado J, Prati F, Miguel MS et al. Polarization properties of vertical-cavity surface-emitting lasers. IEEE J Quantum Electron 33, 765–783 (1997). doi: 10.1109/3.572151

    CrossRef Google Scholar

    [48] Wang L, Wu ZM, Wu JG et al. Long-haul dual-channel bidirectional chaos communication based on polarization-resolved chaos synchronization between twin 1550 nM VCSELs subject to variable-polarization optical injection. Opt Commun 334, 214–221 (2015). doi: 10.1016/j.optcom.2014.08.041

    CrossRef Google Scholar

    [49] Nguimdo RM, Verschaffelt G, Danckaert J et al. Simultaneous computation of two independent tasks using reservoir computing based on a single photonic nonlinear node with optical feedback. IEEE Trans Neural Netw Learn Syst 26, 3301–3307 (2015). doi: 10.1109/TNNLS.2015.2404346

    CrossRef Google Scholar

    [50] Yang YG, Zhou P, Mu PH et al. Time-delayed reservoir computing based on an optically pumped spin VCSEL for high-speed processing. Nonlinear Dyn 107, 2619–2632 (2022). doi: 10.1007/s11071-021-07140-5

    CrossRef Google Scholar

    [51] Panajotov K, Sciamanna M, Arteaga MA et al. Optical feedback in vertical-cavity surface-emitting lasers. IEEE J Sel Top Quantum Electron 19, 1700312 (2013). doi: 10.1109/JSTQE.2012.2235060

    CrossRef Google Scholar

    [52] Bueno J, Brunner D, Soriano MC et al. Conditions for reservoir computing performance using semiconductor lasers with delayed optical feedback. Opt Express 25, 2401–2412 (2017). doi: 10.1364/OE.25.002401

    CrossRef Google Scholar

    [53] Larger L, Baylón-Fuentes A, Martinenghi R et al. High-speed photonic reservoir computing using a time-delay-based architecture: million words per second classification. Phys Rev X 7, 011015 (2017).

    Google Scholar

    [54] Shen YW, Li RQ, Liu GT et al. Deep photonic reservoir computing recurrent network. Optica 10, 1745–1751 (2023). doi: 10.1364/OPTICA.506635

    CrossRef Google Scholar

    [55] Lupo A, Picco E, Zajnulina M et al. Deep photonic reservoir computer based on frequency multiplexing with fully analog connection between layers. Optica 10, 1478–1485 (2023). doi: 10.1364/OPTICA.489501

    CrossRef Google Scholar

  • Supplementary information for Streamlined photonic reservoir computer with augmented memory capabilities
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(7)

Tables(1)

Article Metrics

Article views() PDF downloads() Cited by()

Access History
Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint