Lu QB, Xiao QX, Liu CX, Wang YN, Zhu QX et al. Inverse design and realization of an optical cavity-based displacement transducer with arbitrary responses. Opto-Electron Adv 6, 220018 (2023). doi: 10.29026/oea.2023.220018
Citation: Lu QB, Xiao QX, Liu CX, Wang YN, Zhu QX et al. Inverse design and realization of an optical cavity-based displacement transducer with arbitrary responses. Opto-Electron Adv 6, 220018 (2023). doi: 10.29026/oea.2023.220018

Article Open Access

Inverse design and realization of an optical cavity-based displacement transducer with arbitrary responses

More Information
  • Optical cavity has long been critical for a variety of applications ranging from precise measurement to spectral analysis. A number of theories and methods have been successful in describing the optical response of a stratified optical cavity, while the inverse problem, especially the inverse design of a displacement sensitive cavity, remains a significant challenge due to the cost of computation and comprehensive performance requirements. This paper reports a novel inverse design methodology combining the characteristic matrix method, mixed-discrete variables optimization algorithm, and Monte Carlo method-based tolerance analysis. The material characteristics are indexed to enable the mixed-discrete variables optimization, which yields considerable speed and efficiency improvements. This method allows arbitrary response adjustment with technical feasibility and gives a glimpse into the analytical characterization of the optical response. Two entirely different light-displacement responses, including an asymmetric sawtooth-like response and a highly symmetric response, are dug out and experimentally achieved, which fully confirms the validity of the method. The compact Fabry-Perot cavities have a good balance between performance and feasibility, making them promising candidates for displacement transducers. More importantly, the proposed inverse design paves the way for a universal design of optical cavities, or even nanophotonic devices.
  • 加载中
  • [1] Balle TJ, Flygare WH. Fabry-Perot cavity pulsed fourier transform microwave spectrometer with a pulsed nozzle particle source. Rev Sci Instrum 52, 33–45 (1981). doi: 10.1063/1.1136443

    CrossRef Google Scholar

    [2] Liang WJ, Bockrath M, Bozovic D, Hafner JH, Tinkham M et al. Fabry-Perot interference in a nanotube electron waveguide. Nature 411, 665–669 (2001). doi: 10.1038/35079517

    CrossRef Google Scholar

    [3] Luo XG, Tsai DP, Gu M, Hong MH. Subwavelength interference of light on structured surfaces. Adv Opt Photonics 10, 757–842 (2018). doi: 10.1364/AOP.10.000757

    CrossRef Google Scholar

    [4] Munkhbat B, Canales A, Küçüköz B, Baranov DG, Shegai TO. Tunable self-assembled Casimir microcavities and polaritons. Nature 597, 214–219 (2021). doi: 10.1038/s41586-021-03826-3

    CrossRef Google Scholar

    [5] Kouh T, Karabacak D, Kim DH, Ekinci KL. Diffraction effects in optical interferometric displacement detection in nanoelectromechanical systems. Appl Phys Lett 86, 013106 (2005). doi: 10.1063/1.1843289

    CrossRef Google Scholar

    [6] Lu QB, Wang C, Bai J, Wang KW, Lian WX et al. Subnanometer resolution displacement sensor based on a grating interferometric cavity with intensity compensation and phase modulation. Appl Opt 54, 4188–4196 (2015). doi: 10.1364/AO.54.004188

    CrossRef Google Scholar

    [7] De Groot PJ. A review of selected topics in interferometric optical metrology. Rep Prog Phys 82, 056101 (2019). doi: 10.1088/1361-6633/ab092d

    CrossRef Google Scholar

    [8] Teh PC, Petropoulos P, Ibsen M, Richardson DJ. A comparative study of the performance of seven- and 63-chip optical code-division multiple-access encoders and decoders based on superstructured fiber Bragg gratings. J Lightwave Technol 19, 1352–1365 (2001). doi: 10.1109/50.948283

    CrossRef Google Scholar

    [9] Kimura A, Gao W, Kim W, Hosono K, Shimizu Y et al. A sub-nanometric three-axis surface encoder with short-period planar gratings for stage motion measurement. Precis Eng 36, 576–585 (2012). doi: 10.1016/j.precisioneng.2012.04.005

    CrossRef Google Scholar

    [10] Yu HY, Chen XL, Liu CJ, Cai GG, Wang WD. A survey on the grating based optical position encoder. Opt Laser Technol 143, 107352 (2021). doi: 10.1016/j.optlastec.2021.107352

    CrossRef Google Scholar

    [11] Kiesel N, Blaser F, Delić U, Grass D, Kaltenbaek R et al. Cavity cooling of an optically levitated submicron particle. Natl Proc Acad Sci USA 110, 14180–14185 (2013). doi: 10.1073/pnas.1309167110

    CrossRef Google Scholar

    [12] Hall NA, Okandan M, Littrell R, Serkland DK, Keeler GA et al. Micromachined accelerometers with optical interferometric read-out and integrated electrostatic actuation. J Microelectromech Syst 17, 37–44 (2008). doi: 10.1109/JMEMS.2007.910243

    CrossRef Google Scholar

    [13] Lu QB, Bai J, Wang KW, He SL. Design, optimization, and realization of a high-performance MOEMS accelerometer from a double-device-layer SOI wafer. J Microelectromech Syst 26, 859–869 (2017). doi: 10.1109/JMEMS.2017.2693341

    CrossRef Google Scholar

    [14] Li CH, Benedick AJ, Fendel P, Glenday AG, Kärtner FX et al. A laser frequency comb that enables radial velocity measurements with a precision of 1 cm s-1. Nature 452, 610–612 (2008). doi: 10.1038/nature06854

    CrossRef Google Scholar

    [15] Berkovic G, Shafir E. Optical methods for distance and displacement measurements. Adv Opt Photonics 4, 441–471 (2012). doi: 10.1364/AOP.4.000441

    CrossRef Google Scholar

    [16] Sun B, Wang YP, Qu JL, Liao CR, Yin GL et al. Simultaneous measurement of pressure and temperature by employing Fabry-Perot interferometer based on pendant polymer droplet. Opt Express 23, 1906–1911 (2015). doi: 10.1364/OE.23.001906

    CrossRef Google Scholar

    [17] Lu QB, Wang YA, Wang XX, Yao Y, Wang XW et al. Review of micromachined optical accelerometers: from mg to sub-μg. Opto-Electron Adv 4, 200045 (2021).

    Google Scholar

    [18] Dai P, Wang YS, Hu YQ, De Groot CH, Muskens O et al. Accurate inverse design of Fabry-Perot-cavity-based color filters far beyond sRGB via a bidirectional artificial neural network. Photonics Res 9, B236–B246 (2021). doi: 10.1364/PRJ.415141

    CrossRef Google Scholar

    [19] Berreman DW. Optics in stratified and anisotropic media: 4×4-matrix formulation. J Opt Soc Am 62, 502–510 (1972). doi: 10.1364/JOSA.62.000502

    CrossRef Google Scholar

    [20] Monzón JJ, Sánchez-Soto LL, Bernabeu E. Influence of coating thickness on the performance of a Fabry-Perot Interferometer. Appl Opt 30, 4126–4132 (1991). doi: 10.1364/AO.30.004126

    CrossRef Google Scholar

    [21] Monzón JJ, Sánchez-Soto LL, Csilling Á. Method for coating optimization in a Fabry-Perot interferometer. Appl Opt 32, 4282–4284 (1993). doi: 10.1364/AO.32.004282

    CrossRef Google Scholar

    [22] Monzón JJ, Sánchez-Soto LL. Reflected fringes in a Fabry-Perot interferometer with absorbing coatings. J Opt Soc Am A 12, 132–136 (1995).

    Google Scholar

    [23] Kim Y, Neikirk DP. Design for manufacture of micromachined Fabry-pérot cavity-based sensors. Sensors Actuat A:Phys 50, 141–146 (1995). doi: 10.1016/0924-4247(96)80098-7

    CrossRef Google Scholar

    [24] Tian JJ, Jiao YZ, Fu Q, Ji SB, Li ZG et al. A Fabry-Perot interferometer strain sensor based on concave-core photonic crystal fiber. J Lightwave Technol 36, 1952–1958 (2018). doi: 10.1109/JLT.2018.2797104

    CrossRef Google Scholar

    [25] Wang ZY, Clark JK, Ho YL, Vilquin B, Daiguji H et al. Narrowband thermal emission realized through the coupling of cavity and Tamm plasmon resonances. ACS Photonics 5, 2446–2452 (2018). doi: 10.1021/acsphotonics.8b00236

    CrossRef Google Scholar

    [26] Molesky S, Lin Z, Piggott AY, Jin WL, Vucković J et al. Inverse design in nanophotonics. Nat Photonics 12, 659–670 (2018). doi: 10.1038/s41566-018-0246-9

    CrossRef Google Scholar

    [27] Ma W, Liu ZC, Kudyshev ZA, Boltasseva A, Cai WS et al. Deep learning for the design of photonic structures. Nat Photonics 15, 77–90 (2021). doi: 10.1038/s41566-020-0685-y

    CrossRef Google Scholar

    [28] Wiecha PR, Arbouet A, Girard C, Muskens OL. Deep learning in nano-photonics: inverse design and beyond. Photonics Res 9, B182–B200 (2021). doi: 10.1364/PRJ.415960

    CrossRef Google Scholar

    [29] Liao MH, Zheng SS, Pan SX, Lu DJ, He WQ et al. Deep-learning-based ciphertext-only attack on optical double random phase encryption. Opto-Electron Adv 4, 200016 (2021). doi: 10.29026/oea.2021.200016

    CrossRef Google Scholar

    [30] Mur G. Absorbing boundary conditions for the finite-difference approximation of the time-domain electromagnetic-field equations. IEEE Trans Electromagn Compat EMC-23, 377–382 (1981).

    Google Scholar

    [31] Moharam MG, Gaylord TK. Rigorous coupled-wave analysis of planar-grating diffraction. J Opt Soc Am 71, 811–818 (1981). doi: 10.1364/JOSA.71.000811

    CrossRef Google Scholar

    [32] Shi Y, Li W, Raman A, Fan SH. Optimization of multilayer optical films with a memetic algorithm and mixed integer programming. ACS Photonics 5, 684–691 (2018). doi: 10.1021/acsphotonics.7b01136

    CrossRef Google Scholar

    [33] Zhang ZY, Huang BJ, Zhang Z, Cheng CT, Liu HW et al. Highly efficient vertical fiber interfacing grating coupler with bilayer anti-reflection cladding and backside metal mirror. Opt Laser Technol 90, 136–143 (2017). doi: 10.1016/j.optlastec.2016.08.001

    CrossRef Google Scholar

    [34] Joshi S, Kiani A. Hybrid artificial neural networks and analytical model for prediction of optical constants and bandgap energy of 3D nanonetwork silicon structures. Opto-Electron Adv 4, 210039 (2021). doi: 10.29026/oea.2021.210039

    CrossRef Google Scholar

    [35] Malkiel I, Mrejen M, Nagler A, Arieli U, Wolf L et al. Plasmonic nanostructure design and characterization via Deep Learning. Light Sci Appl 7, 60 (2018). doi: 10.1038/s41377-018-0060-7

    CrossRef Google Scholar

    [36] Ginis V, Piccardo M, Tamagnone M, Lu JS, Qiu M et al. Remote structuring of near-field landscapes. Science 369, 436–440 (2020). doi: 10.1126/science.abb6406

    CrossRef Google Scholar

    [37] Hu YQ, Luo XH, Chen YQ, Liu Q, Li X et al. 3D-Integrated metasurfaces for full-colour holography. Light Sci Appl 8, 86 (2019). doi: 10.1038/s41377-019-0198-y

    CrossRef Google Scholar

    [38] Estakhri NM, Edwards B, Engheta N. Inverse-designed metastructures that solve equations. Science 363, 1333–1338 (2019). doi: 10.1126/science.aaw2498

    CrossRef Google Scholar

    [39] Guo DG, Lin RM, Wang WJ. Modelling and optimization of a Fabry–Perot microcavity for sensing applications. J Opt:Pure Appl Opt 6, 1027–1035 (2004). doi: 10.1088/1464-4258/6/11/005

    CrossRef Google Scholar

    [40] Passaglia E, Stromberg RR, Kruger J. Ellipsometry in the Measurement of Surfaces and Thin Films: Symposium Proceedings (US National Bureau of Standards, Washington, 1964).

    Google Scholar

    [41] Ciesielski A, Skowronski L, Trzcinski M, Szoplik T. Controlling the optical parameters of self-assembled silver films with wetting layers and annealing. Appl Surf Sci 421, 349–356 (2017). doi: 10.1016/j.apsusc.2017.01.039

    CrossRef Google Scholar

    [42] Johnson PB, Christy RW. Optical constants of transition metals: Ti, V, Cr, Mn, Fe, Co, Ni, and Pd. Phys Rev B 9, 5056–5070 (1974). doi: 10.1103/PhysRevB.9.5056

    CrossRef Google Scholar

  • Supplementary information for Inverse design and realization of an optical cavity-based displacement transducer with arbitrary response
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(8)

Tables(2)

Article Metrics

Article views(8880) PDF downloads(1145) Cited by(0)

Access History
Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint