Citation: | Chen LW, Hong MH. Functional nonlinear optical nanoparticles synthesized by laser ablation. Opto-Electron Sci 1, 210007 (2022). doi: 10.29026/oes.2022.210007 |
[1] | Boyd RW. Nonlinear Optics 3rd ed (Academic Press, Waltham, 2008). |
[2] | Kaneko K, Sun HB, Duan XM, Kawata S. Two-photon photoreduction of metallic nanoparticle gratings in a polymer matrix. Appl Phys Lett 83, 1426–1428 (2003). doi: 10.1063/1.1601302 |
[3] | Camacho-Morales R, Rocco D, Xu L, Gili VF, Dimitrov N et al. Infrared upconversion imaging in nonlinear metasurfaces. Adv Photonics 3, 036002 (2021). |
[4] | Nauman M, Yan JS, Rahmani M, De Ceglia D, De Angelis C et al. Nonlinear transition-metal-dichalcogenide metasurfaces. In 14th Pacific Rim Conference on Lasers and Electro-Optics Pacific Rim (CLEO PR 2020) 1–2 (OPTIC, 2020);http://doi.org/10.1364/CLEOPR.2020.C2E_4. |
[5] | Chen JH, Shen XQ, Tang SJ, Cao QT, Gong QH et al. Microcavity nonlinear optics with an organically functionalized surface. Phys Rev Lett 123, 173902 (2019). doi: 10.1103/PhysRevLett.123.173902 |
[6] | Zhang SL, Liu LW, Ren S, Li ZL, Zhao YH et al. Recent advances in nonlinear optics for bio-imaging applications. Opto-Electron Adv 3, 200003 (2020). doi: 10.29026/oea.2020.200003 |
[7] | Zhang J, Sun TT, Zhang C, Yang YW, Lin CG et al. Enhanced third-order optical nonlinearity and photon luminescence of Sn2+ in gold nanoparticles embedded chalcogenide glasses. J Mater Sci 55, 15882–15893 (2020). doi: 10.1007/s10853-020-05124-1 |
[8] | Yang YW, Sun TT, Lin CG, Dai SX, Zhang XH et al. Performance modification of third-order optical nonlinearity of chalcogenide glasses by nanocrystallization. Ceram Int 45, 18767–18771 (2019). doi: 10.1016/j.ceramint.2019.06.103 |
[9] | Zhang XY, Chen FF, Lin RQ, Huang YC, Dai SX et al. Investigation of third-order optical nonlinearities of copper doped germanium-gallium-sulfur chalcogenide glasses. J Non-Cryst Solids 475, 167–171 (2017). doi: 10.1016/j.jnoncrysol.2017.09.002 |
[10] | Zhang YN, Wu JY, Qu Y, Yang YY, Jia LN et al. Graphene oxide for enhanced optical nonlinear performance in CMOS compatible integrated devices. Proc SPIE 11688, 116880W (2021). |
[11] | Jia LN, Cui DD, Wu JY, Feng HF, Yang YY et al. BiOBr nanoflakes with strong Kerr nonlinearity towards hybrid integrated photonic devices. Proc SPIE 11282, 112820Q (2020). |
[12] | Zhang YN, Wu JY, Yang YY, Qu Y, Jia LN et al. Enhanced kerr nonlinearity and nonlinear figure of merit in silicon nanowires integrated with 2D graphene oxide films. ACS Appl Mater Interfaces 12, 33094–33103 (2020). doi: 10.1021/acsami.0c07852 |
[13] | Daniel MC, Astruc D. Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev 104, 293–346 (2004). doi: 10.1021/cr030698+ |
[14] | Zhou R, Zhang Z, Hong MH. The art of laser ablation in aeroengine: the crown jewel of modern industry. J Appl Phys 127, 080902 (2020). doi: 10.1063/1.5134813 |
[15] | Khew SY, Tan CF, Yan HP, Yan SD, Thian ES et al. Nanosecond laser ablation for enhanced adhesion of CuO nanowires on copper substrate and its application for oil-water separation. Appl Surf Sci 465, 995–1002 (2019). doi: 10.1016/j.apsusc.2018.09.256 |
[16] | Zhou R, Yin YC, Long D, Cui JQ, Yan HP et al. PVP-assisted laser ablation growth of Ag nanocubes anchored on reduced graphene oxide (rGO) for efficient photocatalytic CO2 reduction. Prog Nat Sci:Mater Int 29, 660–666 (2019). doi: 10.1016/j.pnsc.2019.11.001 |
[17] | Yan HP, Xiao X, Chen ZL, Chen YS, Zhou R et al. Realization of adhesion enhancement of CuO nanowires growth on copper substrate by laser texturing. Opt Laser Technol 119, 105612 (2019). doi: 10.1016/j.optlastec.2019.105612 |
[18] | Zhou R, Yin YC, Liu YJ, Cui JQ, Li XG et al. Surfactant mediated synthesis of structured metal nanoparticle by pulsed laser ablation for photocatalysis. Proc SPIE 10842, 108420F (2019). |
[19] | Du ZR, Palina N, Chen J, Hong MH, Hoex B. Rear-side contact opening by laser ablation for industrial screen-printed aluminium local back surface field silicon wafer solar cells. Energy Procedia 25, 19–27 (2012). doi: 10.1016/j.egypro.2012.07.003 |
[20] | Hong MH, Sugioka K, Wu DJ, Wong LL, Lu YF et al. Laser-induced-plasma-assisted ablation for glass microfabrication. Proc SPIE 4595, 138–146 (2001). doi: 10.1117/12.446603 |
[21] | Lam HM, Hong MH, Yuan S, Chong TC. Laser ablation of GaN/sapphire structure for LED. Proc SPIE 4830, 114–118 (2003). doi: 10.1117/12.486561 |
[22] | Hong MH, Xie Q, Lim BC, Sugioka K, Midorikawa K et al. Low resistivity glass metallization by laser induced plasma-assisted ablation. Proc SPIE 5662, 532–537 (2004). |
[23] | Chichkov BN, Momma C, Nolte S, Von Alvensleben F, Tünnermann A. Femtosecond, picosecond and nanosecond laser ablation of solids. Appl Phys A 63, 109–115 (1996). doi: 10.1007/BF01567637 |
[24] | Gamaly EG, Rode AV, Luther-Davies B, Tikhonchuk VT. Ablation of solids by femtosecond lasers: ablation mechanism and ablation thresholds for metals and dielectrics. Phys Plasmas 9, 949–957 (2002). doi: 10.1063/1.1447555 |
[25] | Amendola V, Amans D, Ishikawa Y, Koshizaki N, Scirè S et al. Room-temperature laser synthesis in liquid of oxide, metal-oxide core-shells, and doped oxide nanoparticles. Chem – A Eur J 26, 9206–9242 (2020). doi: 10.1002/chem.202000686 |
[26] | Yang GW. Laser ablation in liquids: applications in the synthesis of nanocrystals. Prog Mater Sci 52, 648–698 (2007). doi: 10.1016/j.pmatsci.2006.10.016 |
[27] | Amendola V, Meneghetti M. Laser ablation synthesis in solution and size manipulation of noble metal nanoparticles. Phys Chem Chem Phys 11, 3805–3821 (2009). doi: 10.1039/b900654k |
[28] | Sakamoto M, Fujistuka M, Majima T. Light as a construction tool of metal nanoparticles: synthesis and mechanism. J Photochem Photobiol C:Photochem Rev 10, 33–56 (2009). doi: 10.1016/j.jphotochemrev.2008.11.002 |
[29] | Rehbock C, Jakobi J, Gamrad L, Van Der Meer S, Tiedemann D et al. Current state of laser synthesis of metal and alloy nanoparticles as ligand-free reference materials for nano-toxicological assays. Beilstein J Nanotechnol 5, 1523–1541 (2014). doi: 10.3762/bjnano.5.165 |
[30] | Asahi T, Sugiyama T, Masuhara H. Laser fabrication and spectroscopy of organic nanoparticles. Acc Chem Res 41, 1790–1798 (2008). doi: 10.1021/ar800125s |
[31] | Zhang DS, Gökce B, Barcikowski S. Laser synthesis and processing of colloids: fundamentals and applications. Chem Rev 117, 3990–4103 (2017). doi: 10.1021/acs.chemrev.6b00468 |
[32] | González-Rubio G, Guerrero-Martínez A, Liz-Marzán LM. Reshaping, fragmentation, and assembly of gold nanoparticles assisted by pulse lasers. Acc Chem Res 49, 678–686 (2016). doi: 10.1021/acs.accounts.6b00041 |
[33] | Kanitz A, Kalus MR, Gurevich EL, Ostendorf A, Barcikowski S et al. Review on experimental and theoretical investigations of the early stage, femtoseconds to microseconds processes during laser ablation in liquid-phase for the synthesis of colloidal nanoparticles. Plasma Sources Sci Technol 28, 103001 (2019). doi: 10.1088/1361-6595/ab3dbe |
[34] | Boyd RW. The intensity-dependent refractive index. In Nonlinear Optics 207–252 (2008);http://doi.org/10.1016/B978-0-12-369470-6.00004-6. |
[35] | Shegai T, Li ZP, Dadosh T, Zhang ZY, Xu HX et al. Managing light polarization via plasmon–molecule interactions within an asymmetric metal nanoparticle trimer. Proc Natl Acad Sci USA 105, 16448–16453 (2008). doi: 10.1073/pnas.0808365105 |
[36] | Sheik-bahae M, Said AA, Van Stryland EW. High-sensitivity, single-beam n2 measurements. Opt Lett 14, 955–957 (1989). doi: 10.1364/OL.14.000955 |
[37] | Sheik-Bahae M, Said AA, Wei TH, Hagan DJ, Van Stryland EW. Sensitive measurement of optical nonlinearities using a single beam. IEEE J Quantum Electron 26, 760–769 (1990). doi: 10.1109/3.53394 |
[38] | Zhang JM, Claverie J, Chaker M, Ma DL. Colloidal metal nanoparticles prepared by laser ablation and their applications. ChemPhysChem 18, 986–1006 (2017). doi: 10.1002/cphc.201601220 |
[39] | Ahmed N, Darwish S, Alahmari AM. Laser ablation and laser-hybrid ablation processes: a review. Mater Manuf Process 31, 1121–1142 (2016). doi: 10.1080/10426914.2015.1048359 |
[40] | Amendola V, Meneghetti M. What controls the composition and the structure of nanomaterials generated by laser ablation in liquid solution? Phys Chem Chem Phys 15, 3027–3046 (2013). doi: 10.1039/C2CP42895D |
[41] | Torrisi L, Torrisi A. Laser ablation of boron nitride in vacuum and in water. Radiat Eff Defects Solids 174, 76–91 (2019). doi: 10.1080/10420150.2019.1577850 |
[42] | Chen LW, Hong MH. Laser Surface Structuring of Semiconductors and Functionalization. Handbook of Laser Micro- and Nano-Engineering. in (ed. Sugioka K, ) 1–45 (Springer International Publishing, 2020);http://doi.org/10.1007/978-3-319-69537-2_20-1. |
[43] | Malinauskas M, Žukauskas A, Hasegawa S, Hayasaki Y, Mizeikis V et al. Ultrafast laser processing of materials: from science to industry. Light:Sci Appl 5, e16133 (2016). doi: 10.1038/lsa.2016.133 |
[44] | Amendola V, Meneghetti M. Controlled size manipulation of free gold nanoparticles by laser irradiation and their facile bioconjugation. J Mater Chem 17, 4705–4710 (2007). doi: 10.1039/b709621f |
[45] | Xu KC, Zhang CT, Zhou R, Ji R, Hong MH. Hybrid micro/nano-structure formation by angular laser texturing of Si surface for surface enhanced Raman scattering. Opt Express 24, 10352–10358 (2016). doi: 10.1364/OE.24.010352 |
[46] | Norton DP. Pulsed laser deposition of complex materials: progress toward applications. In Pulsed Laser Deposition of Thin Films: Applications‐Led Growth of Functional Materials 1–31 (2006); http://doi.org/10.1002/9780470052129.ch1. |
[47] | Amendola V, Rizzi GA, Polizzi S, Meneghetti M. Synthesis of gold nanoparticles by laser ablation in toluene: quenching and recovery of the surface plasmon absorption. J Phys Chem B 109, 23125–23128 (2005). doi: 10.1021/jp055783v |
[48] | Xiao J, Liu P, Wang CX, Yang GW. External field-assisted laser ablation in liquid: an efficient strategy for nanocrystal synthesis and nanostructure assembly. Prog Mater Sci 87, 140–220 (2017). doi: 10.1016/j.pmatsci.2017.02.004 |
[49] | Kazemizadeh F, Malekfar R, Parvin P. Pulsed laser ablation synthesis of carbon nanoparticles in vacuum. J Phys Chem Solids 104, 252–256 (2017). doi: 10.1016/j.jpcs.2017.01.015 |
[50] | Schinca DC, Scaffardi LB, Videla FA, Torchia GA, Moreno P et al. Silver–silver oxide core–shell nanoparticles by femtosecond laser ablation: core and shell sizing by extinction spectroscopy. J Phys D:Appl Phys 42, 215102 (2009). doi: 10.1088/0022-3727/42/21/215102 |
[51] | Tan DZ, Zhou SF, Qiu JR, Khusro N. Preparation of functional nanomaterials with femtosecond laser ablation in solution. J Photochem Photobiol C:Photochem Rev 17, 50–68 (2013). doi: 10.1016/j.jphotochemrev.2013.08.002 |
[52] | Menéndez-Manjón A, Barcikowski S. Hydrodynamic size distribution of gold nanoparticles controlled by repetition rate during pulsed laser ablation in water. Appl Surf Sci 257, 4285–4290 (2011). doi: 10.1016/j.apsusc.2010.12.037 |
[53] | Santillán JMJ, Videla FA, Van Raap MBF, Schinca DC, Scaffardi LB. Analysis of the structure, configuration, and sizing of Cu and Cu oxide nanoparticles generated by fs laser ablation of solid target in liquids. J Appl Phys 113, 134305 (2013). doi: 10.1063/1.4798387 |
[54] | Wang HQ, Jia LC, Li L, Li XY, Swiatkowska-Warkocka Z et al. Photomediated assembly of single crystalline silver spherical particles with enhanced electrochemical performance. J Mater Chem A 1, 692–698 (2013). doi: 10.1039/C2TA00389A |
[55] | Sajti CL, Sattari R, Chichkov B, Barcikowski S. Ablation efficiency of α-Al2O3 in liquid phase and ambient air by nanosecond laser irradiation. Appl Phys A 100, 203–206 (2010). doi: 10.1007/s00339-010-5572-9 |
[56] | Hong MH, Koh ML, Zhu S, Lu YF, Chong TC. Steam-assisted laser ablation and its signal diagnostics. Appl Surf Sci 197–198, 911–914 (2002). |
[57] | Boyer P, Meunier M. Modeling solvent influence on growth mechanism of nanoparticles (Au, Co) synthesized by surfactant free laser processes. J Phys Chem C 116, 8014–8019 (2012). doi: 10.1021/jp2092994 |
[58] | Du ZR, Chen LW, Kao TS, Wu MX, Hong MH. Improved optical limiting performance of laser-ablation-generated metal nanoparticles due to silica-microsphere-induced local field enhancement. BEILSTEIN J Nanotechnol 6, 1199–1204 (2015). doi: 10.3762/bjnano.6.122 |
[59] | Sylvestre JP, Kabashin AV, Sacher E, Meunier M. Femtosecond laser ablation of gold in water: influence of the laser-produced plasma on the nanoparticle size distribution. Appl Phys A 80, 753–758 (2005). doi: 10.1007/s00339-004-3081-4 |
[60] | Tsuji T, Kakita T, Tsuji M. Preparation of nano-size particles of silver with femtosecond laser ablation in water. Appl Surf Sci 206, 314–320 (2003). doi: 10.1016/S0169-4332(02)01230-8 |
[61] | Kuzmin PG, Shafee GA, Viau G, Warot-Fonrose B, Barberoglou M et al. Porous nanoparticles of Al and Ti generated by laser ablation in liquids. Appl Surf Sci 258, 9283–9287 (2012). doi: 10.1016/j.apsusc.2011.08.108 |
[62] | Chen LW, Jiang XF, Guo ZM, Kao TS, Xu QH et al. Tuning optical nonlinearity of laser-ablation-synthesized silicon nanoparticles via doping concentration. J Nanomater 2014, 652829 (2014). doi: 10.1155/2014/652829 |
[63] | Said A, Sajti L, Giorgio S, Marine W. Synthesis of nanohybrid materials by femtosecond laser ablation in liquid medium. J Phys Conf Ser 59, 055 (2007). |
[64] | Semaltianos NG, Logothetidis S, Perrie W, Romani S, Potter RJ et al. CdTe nanoparticles synthesized by laser ablation. Appl Phys Lett 95, 033302 (2009). doi: 10.1063/1.3171941 |
[65] | Semaltianos NG, Logothetidis S, Perrie W, Romani S, Potter RJ et al. II–VI semiconductor nanoparticles synthesized by laser ablation. Appl Phys A 94, 641 (2009). doi: 10.1007/s00339-008-4854-y |
[66] | Santagata A, De Bonis A, De Giacomo A, Dell’Aglio M, Laurita A et al. Carbon-based nanostructures obtained in water by ultrashort laser pulses. J Phys Chem C 115, 5160–5164 (2011). doi: 10.1021/jp1094239 |
[67] | Teruki S, Tsuyoshi A, Hiroshi M. Formation of 10 nm-sized Oxo(phtalocyaninato)vanadium(IV) Particles by femtosecond laser ablation in water. Chem Lett 33, 724–725 (2004). doi: 10.1246/cl.2004.724 |
[68] | Barcikowski S, Hahn A, Guggenheim M, Reimers K, Ostendorf A. Biocompatibility of nanoactuators: stem cell growth on laser-generated nickel–titanium shape memory alloy nanoparticles. J Nanoparticle Res 12, 1733–1742 (2010). doi: 10.1007/s11051-009-9834-4 |
[69] | Yamamoto T, Shimotsuma Y, Sakakura M, Nishi M, Miura K et al. Intermetallic magnetic nanoparticle precipitation by femtosecond laser fragmentation in liquid. Langmuir 27, 8359–8364 (2011). doi: 10.1021/la201211e |
[70] | Stratakis E, Barberoglou M, Fotakis C, Viau G, Garcia C et al. Generation of Al nanoparticles via ablation of bulk Al in liquids with short laser pulses. Opt Express 17, 12650–12659 (2009). doi: 10.1364/OE.17.012650 |
[71] | Podagatlapalli GK, Hamad S, Sreedhar S, Tewari SP, Rao SV. Fabrication and characterization of aluminum nanostructures and nanoparticles obtained using femtosecond ablation technique. Chem Phys Lett 530, 93–97 (2012). doi: 10.1016/j.cplett.2012.01.081 |
[72] | Zhou Y, Chen LW, Du ZR, Cao Y, Li FP et al. Tunable optical nonlinearity of silicon nanoparticles in solid state organic matrix. Opt Mater Express 5, 1606–1612 (2015). doi: 10.1364/OME.5.001606 |
[73] | Chen GX, Hong MH, He Q, ChenWZ, Elim HI et al. Formation, structure and nonlinear optical properties of carbon nanoparticles synthesized by pulsed laser ablation. Appl Phys A 79, 1079–1082 (2004). doi: 10.1007/s00339-004-2635-9 |
[74] | Chen GX, Hong MX, Chong TC, Elim HI, Ma GH et al. Preparation of carbon nanoparticles with strong optical limiting properties by laser ablation in water. J Appl Phys 95, 1455–1459 (2004). doi: 10.1063/1.1637933 |
[75] | Chen GX, Hong MH, Tan LS, Chong TC, Elim HI et al. Optical limiting phenomena of carbon nanoparticles prepared by laser ablation in liquids. J Phys:Conf Ser 59, 289–292 (2007). doi: 10.1088/1742-6596/59/1/060 |
[76] | Josset S, Muller O, Schmidlin L, Pichot V, Spitzer D. Nonlinear optical properties of detonation nanodiamond in the near infrared: effects of concentration and size distribution. Diam Relat Mater 32, 66–71 (2013). doi: 10.1016/j.diamond.2012.12.001 |
[77] | Amans D, Diouf M, Lam J, Ledoux G, Dujardin C. Origin of the nano-carbon allotropes in pulsed laser ablation in liquids synthesis. J Colloid Interface Sci 489, 114–125 (2017). doi: 10.1016/j.jcis.2016.08.017 |
[78] | Yang GW, Wang JB, Liu QX. Preparation of nano-crystalline diamonds using pulsed laser induced reactive quenching. J Phys:Condens Matter 10, 7923–7927 (1998). doi: 10.1088/0953-8984/10/35/024 |
[79] | Zhang CY, Wang CX, Yang YH, Yang GW. A nanoscaled thermodynamic approach in nucleation of CVD diamond on nondiamond surfaces. J Phys Chem B 108, 2589–2593 (2004). doi: 10.1021/jp036887d |
[80] | Kraus D, Ravasio A, Gauthier M, Gericke DO, Vorberger J et al. Nanosecond formation of diamond and lonsdaleite by shock compression of graphite. Nat Commun 7, 10970 (2016). doi: 10.1038/ncomms10970 |
[81] | Pearce SRJ, Henley SJ, Claeyssens F, May PW, Hallam KR et al. Production of nanocrystalline diamond by laser ablation at the solid/liquid interface. Diam Relat Mater 13, 661–665 (2004). doi: 10.1016/j.diamond.2003.08.027 |
[82] | Goh YW, Lu YF, Hong MH, Chong TC. Femtosecond laser ablation of copper. Proc SPIE 4830, 442–446 (2003). doi: 10.1117/12.486537 |
[83] | Tsuji T, Iryo K, Watanabe N, Tsuji M. Preparation of silver nanoparticles by laser ablation in solution: influence of laser wavelength on particle size. Appl Surf Sci 202, 80–85 (2002). doi: 10.1016/S0169-4332(02)00936-4 |
[84] | Barcikowski S, Walter J, Hahn A, Koch J, Haloui H et al. Picosecond and femtosecond laser machining may cause health risks related to nanoparticle emission. J Laser Micro/Nanoeng 4, 159–164 (2009). doi: 10.2961/jlmn.2009.03.0003 |
[85] | Zijlstra P, Chon JWM, Gu M. White light scattering spectroscopy and electron microscopy of laser induced melting in single gold nanorods. Phys Chem Chem Phys 11, 5915–5921 (2009). doi: 10.1039/b905203h |
[86] | Link S, Burda C, Mohamed MB, Nikoobakht B, El-Sayed MA. Laser photothermal melting and fragmentation of gold nanorods: energy and laser pulse-width dependence. J Phys Chem A 103, 1165–1170 (1999). doi: 10.1021/jp983141k |
[87] | Logunov SL, Ahmadi TS, El-Sayed MA, Khoury JT, Whetten RL. Electron dynamics of passivated gold nanocrystals probed by subpicosecond transient absorption spectroscopy. J Phys Chem B 101, 3713–3719 (1997). doi: 10.1021/jp962923f |
[88] | Cui H, Liu P, Yang GW. Noble metal nanoparticle patterning deposition using pulsed-laser deposition in liquid for surface-enhanced Raman scattering. Appl Phys Lett 89, 153124 (2006). doi: 10.1063/1.2359289 |
[89] | Raveendran P, Fu J, Wallen SL. A simple and “green” method for the synthesis of Au, Ag, and Au–Ag alloy nanoparticles. Green Chem 8, 34–38 (2006). doi: 10.1039/B512540E |
[90] | Lin XZ, Liu P, Yu JM, Yang GW. Synthesis of CuO nanocrystals and sequential assembly of nanostructures with shape-dependent optical absorption upon laser ablation in liquid. J Phys Chem C 113, 17543–17547 (2009). doi: 10.1021/jp907237q |
[91] | Boltaev GS, Ganeev RA, Krishnendu PS, Zhang K, Guo CL. Nonlinear optical characterization of copper oxide nanoellipsoids. Sci Rep 9, 11414 (2019). doi: 10.1038/s41598-019-47941-8 |
[92] | Liu CH, Hong MH, Zhou Y, Chen GX, Saw MM et al. Synthesis and characterization of Ag deposited TiO2 particles by laser ablation in water. Phys Scr 2007, 326–328 (2007). |
[93] | Riabinina D, Durand C, Chaker M, Rowell N, Rosei F. A novel approach to the synthesis of photoluminescent germanium nanoparticles by reactive laser ablation. Nanotechnology 17, 2152–2155 (2006). doi: 10.1088/0957-4484/17/9/012 |
[94] | Yoon HR, Jo W, Lee EH, Lee JH, Kim M et al. Generation of phase-change Ge–Sb–Te nanoparticles by pulsed laser ablation. J Non-Cryst Solids 351, 3430–3434 (2005). doi: 10.1016/j.jnoncrysol.2005.09.007 |
[95] | Zhu S, Hong MH, Koh ML, Lu YF. Laser ablation of Si in water and ambient air. Proc SPIE 4426, 39–42 (2002). doi: 10.1117/12.456836 |
[96] | He Y, Fan CH, Lee ST. Silicon nanostructures for bioapplications. Nano Today 5, 282–295 (2010). doi: 10.1016/j.nantod.2010.06.008 |
[97] | Sánchez CJE, Ramírez KME, Delgado SMA, De Guevara HPL, Contreras JC et al. Determination of non-linear optical properties of TiO2 nanoparticles functionalized with an azo-triphenylmethane dye using the z-scan technique. In Latin America Optics and Photonics Conference Tu4A. 11 (Optical Society of America, 2018);http://doi.org/10.1364/LAOP.2018.Tu4A.11. |
[98] | De Boni L, Barbano EC, De Assumpção TA, Misoguti L, Kassab LRP et al. Femtosecond third-order nonlinear spectra of lead-germanium oxide glasses containing silver nanoparticles. Opt Express 20, 6844–6850 (2012). doi: 10.1364/OE.20.006844 |
[99] | Liu P, Wang CX, Chen XY, Yang GW. Controllable fabrication and cathodoluminescence performance of high-index facets GeO2 micro- and nanocubes and spindles upon electrical-field-assisted laser ablation in liquid. J Phys Chem C 112, 13450–13456 (2008). doi: 10.1021/jp802529r |
[100] | Tian ZF, Liang CH, Liu J, Zhang HM, Zhang LD. Zinc stannate nanocubes and nanourchins with high photocatalytic activity for methyl orange and 2, 5-DCP degradation. J Mater Chem 22, 17210–17214 (2012). doi: 10.1039/c2jm32406g |
[101] | Wu J, Jia LN, Zhang YN, Qu Y, Jia BH et al. Graphene oxide for integrated photonics and flat optics. Adv Mater 33, 2006415 (2021). doi: 10.1002/adma.202006415 |
[102] | Loh KP, Bao QL, Eda G, Chhowalla M. Graphene oxide as a chemically tunable platform for optical applications. Nat Chem 2, 1015–1024 (2010). doi: 10.1038/nchem.907 |
[103] | Zheng XR, Jia BH, Chen X, Gu M. In situ third-order non-linear responses during laser reduction of graphene oxide thin films towards on-chip non-linear photonic devices. Adv Mater 26, 2699–2703 (2014). doi: 10.1002/adma.201304681 |
[104] | Tan Y, Chen LW, Wang D, Chen YX, Akhmadaliev S et al. Tunable picosecond laser pulses via the contrast of two reverse saturable absorption phases in a waveguide platform. Sci Rep 6, 26176 (2016). doi: 10.1038/srep26176 |
[105] | Huang HZ, Li JH, Deng J, Ge Y, Liu HG et al. Passively Q-switched Tm/Ho composite laser. Opto-Electron Adv 3, 190031 (2020). |
[106] | Zhang XJ, Li WW, Li J, Xu HY, Cai ZP et al. Mid-infrared all-fiber gain-switched pulsed laser at 3 μm. Opto-Electron Adv 3, 190032 (2020). |
[107] | Wang F, Han Y, Lim CS, Lu YH, Wang J et al. Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping. Nature 463, 1061–1065 (2010). doi: 10.1038/nature08777 |
[108] | Wang SH, Li YH, Little BE, Wang LR, Wang X et al. Athermal third harmonic generation in micro-ring resonators. Opto-Electron Adv 3, 200028 (2020). |
[109] | Hou YH, Liu B, Liu Y, Zhou YH, Song TT, Zhou Q et al. Ultra-low cost Ti powder for selective laser melting additive manufacturing and superior mechanical properties associated. Opto-Electron Adv 2, 180028 (2019). |
[110] | Liu XQ, Bai BF, Chen QD, Sun HB. Etching-assisted femtosecond laser modification of hard materials. Opto-Electron Adv 2, 190021 (2019). |
[111] | Xie XZ, Zhou CX, Wei X, Hu W, Ren QL. Laser machining of transparent brittle materials: from machining strategies to applications. Opto-Electron Adv 2, 180017 (2019). |
[112] | Niu YX, Wu DS, Zhang P, Duan XF. Application of optical limiting materials in laser seeker. Proc SPIE 5646, 297–302 (2005). |
[113] | Ma WZ, Zhao DS, Liu RM, Wang TS, Yuan Q et al. Observation and optimization of 2 μm mode-locked pulses in all-fiber net anomalous dispersion laser cavity. Opto-Electron Adv 3, 200001 (2020). |
[114] | Streubel R, Barcikowski S, Gökce B. Continuous multigram nanoparticle synthesis by high-power, high-repetition-rate ultrafast laser ablation in liquids. Opt Lett 41, 1486–1489 (2016). doi: 10.1364/OL.41.001486 |
[115] | Chen LW, Yin YM, Li Y, Hong MH. Multifunctional inverse sensing by spatial distribution characterization of scattering photons. Opto-Electron Adv 2, 190019 (2019). |
[116] | Ding Y, Yang LJ, Hong MH. Enhancement of pulsed laser ablation assisted with continuous wave laser irradiation. Sci China Phys, Mech Astron 62, 34211 (2019). doi: 10.1007/s11433-018-9288-1 |
[117] | Zhou R, Lin SD, Ding Y, Yang H, Ong YKK et al. Enhancement of laser ablation via interacting spatial double-pulse effect. Opto-Electron Adv 1, 180014 (2018). |
[118] | Lin ZY, Ji LF, Hong MH. Enhancement of femtosecond laser-induced surface ablation via temporal overlapping double-pulse irradiation. Photonics Res 8, 271–278 (2020). doi: 10.1364/PRJ.379254 |
[119] | Hong MH, Ng KY, Xie Q, Shi LP, Chong TC. Pulsed laser ablation in a cooled liquid environment. Appl Phys A 93, 153–157 (2008). doi: 10.1007/s00339-008-4675-z |
[120] | Yang GW, Wang JB. Pulsed-laser-induced transformation path of graphite to diamond via an intermediate rhombohedral graphite. Appl Phys A 72, 475–479 (2001). doi: 10.1007/s003390000537 |
[121] | Singh A, Kutscher HL, Bulmahn JC, Mahajan SD, He GS et al. Laser ablation for pharmaceutical nanoformulations: multi-drug nanoencapsulation and theranostics for HIV. Nanomedicine Nanotechnol, Biol Med 25, 102172 (2020). doi: 10.1016/j.nano.2020.102172 |
[122] | Chen GX, Hong MH, Lan B, Wang ZB, Lu YF et al. A convenient way to prepare magnetic colloids by direct Nd: YAG laser ablation. Appl Surf Sci 228, 169–175 (2004). doi: 10.1016/j.apsusc.2004.01.007 |
[123] | Ong TS, Lee SS, Van LH, Hong MH, Chong TC. Optical limiting properties of silver nanoparticles fabricated by laser ablation. Proc SPIE 5662, 67–70 (2004). doi: https://doi.org/10.1117/12.595840 |
[124] | Jin YJ, Chen LW, Wu MX, Lu XZ, Zhou R et al. Enhanced saturable absorption of the graphene oxide film via photonic nanojets. Opt Mater Express 6, 1114–1121 (2016). doi: 10.1364/OME.6.001114 |
[125] | Chen LW, Zheng XR, Du ZR, Jia BH, Gu M et al. A frozen matrix hybrid optical nonlinear system enhanced by a particle lens. Nanoscale 7, 14982–14988 (2015). doi: 10.1039/C5NR03304G |
Schematics of nonlinear processes. (a) Saturable absorption. (b) Optical limiting1.
Experimental setups of Z-scan. (a) Open aperture and close aperture Z-scan systems. (b) Components to construct the open aperture Z-scan with tunable incident laser power62.
Experimental setups. (a) Laser ablation inside a vacuum chamber for selected gas matrix. (b) Laser ablation with the size selection of nanoparticle synthesis in air.
Nanoparticles synthesized by laser ablation. (a) TEM image of carbon nanoparticles synthesized with an average size of 6.5 nm. (b) TEM image of carbon nanoparticles fabricated in liquid. (c) TEM image of nano-diamond particles fabricated by laser ablation. The diamond nanoparticle was measured to have a grain size ~300 nm. (d) TEM image of organic particles fabricated in water. (e) SEM image of the Co nanoparticles synthesized. (f) Optical images of various metallic nanoparticles’ dispersions. Colors of Au, Ag, Al, Cu, Ti, and Ni nanoparticle dispersions are dark red, orange, transparent, dark green, blue, and dark yellow, respectively. (g) SEM image of CuO nanospindles. (h) SEM image of silicon nanoparticles synthesized in water. Most nanoparticles were around 100 to 300 nm. Some were below 100 nm. (Inset: zoom-in SEM image). (i) SEM image of TiO2/Ag hybrid nanoparticles. The size ranged from 20 to 30 nm. (j) SEM picture of GeO2 nano-rods synthesized in water. (k) SEM picture of the urchin-like ZnSnO3 nanoparticles. Inset: zoom-in picture of a single urchin-like nanoparticle58, 62, 73, 74, 120-122. Figure reproduced from: (b) ref.74, American Institute of Physics; (c) ref.120, Springer-Verlag; (d) ref.121, Elsevier; (e) ref.122, Elsevier; (h) ref.62, under a Creative Commons Attribution 3.0 License.
Optical nonlinear characterization for (a) carbon nanoparticles, (b) metallic nanoparticles, (c) open aperture and (d) close aperture Z-scan results for dielectric nanoparticles62,75, 123. Figure reproduced from: (a) ref.75, IOP Publishing; (b) ref.123, SPIE; (c) ref.62, under a Creative Commons Attribution 3.0 Licens.
Hybrid nonlinear optical systems based on nanoparticles. (a) Schematic diagram to demonstrate the GO system hybridized with transparent microspheres. The photonic nanojet can cause the enhancement of optical nonlinearity. (b) and (c) Nonlinear optical characterization and optical images of the reference group of pure GO and the GO+microspheres sample. Figure reproduced with permission from ref.124, Optical Society of America.
Dynamic nonlinear optical systems based on nanoparticles. (a) Schematic to demonstrate GO+microsphere system in the frozen matrix. Local field enhancement improves the optical nonlinearity of GO. (b) Nonlinear optical characterization to demonstrate the saturable absorption performance. (c) SEM image of microspheres mixed inside the frozen matrix. (d) Steps to show the preparation process to mix the GO and microspheres in the frozen matrix. (e) Nonlinear optical performance of the phase change system under incident light at different intensities. Figure reproduced with permission from ref.125, The Royal Society of Chemistry.
Nonlinear optical systems based on solid-state phase change material. (a) Nonlinear optical performance of phase change system under low laser fluence. Saturable absorption of silicon nanoparticles plays a dominant role. (b) Performance of phase change system under high laser fluence. Nonlinear scattering induced by the formation of the micro-bubbles plays a dominant role. (c) Z-scan characterizations on the tunable nonlinear optical performance of the phase change system. Figure reproduced with permission from ref.72, Optical Society of America.