Chen LW, Hong MH. Functional nonlinear optical nanoparticles synthesized by laser ablation. Opto-Electron Sci 1, 210007 (2022). doi: 10.29026/oes.2022.210007
Citation: Chen LW, Hong MH. Functional nonlinear optical nanoparticles synthesized by laser ablation. Opto-Electron Sci 1, 210007 (2022). doi: 10.29026/oes.2022.210007

Review Open Access

Functional nonlinear optical nanoparticles synthesized by laser ablation

More Information
  • Nonlinear optics is an important research direction with various applications in laser manufacturing, fabrication of nanostructure, sensor design, optoelectronics, biophotonics, quantum optics, etc. Nonlinear optical materials are the fundamental building blocks, which are critical for broad fields ranging from scientific research, industrial production, to military. Nanoparticles demonstrate great potential due to their flexibility to be engineered and their enhanced nonlinear optical properties superior to their bulk counterparts. Synthesis of nanoparticles by laser ablation proves to be a green, efficient, and universal physical approach, versatile for fast one-step synthesis and potential mass production. In this review, the development and latest progress of nonlinear optical nanoparticles synthesized by laser ablation are summarized, which demonstrates its capability for enhanced performance and multiple functions. The theory of optical nonlinear absorption, experimental process of laser ablation, applications, and outlooks are covered. Potential for nanoparticle systems is yet to be fully discovered, which offers opportunities to make various types of next-generation functional devices.
  • 加载中
  • [1] Boyd RW. Nonlinear Optics 3rd ed (Academic Press, Waltham, 2008).

    Google Scholar

    [2] Kaneko K, Sun HB, Duan XM, Kawata S. Two-photon photoreduction of metallic nanoparticle gratings in a polymer matrix. Appl Phys Lett 83, 1426–1428 (2003). doi: 10.1063/1.1601302

    CrossRef Google Scholar

    [3] Camacho-Morales R, Rocco D, Xu L, Gili VF, Dimitrov N et al. Infrared upconversion imaging in nonlinear metasurfaces. Adv Photonics 3, 036002 (2021).

    Google Scholar

    [4] Nauman M, Yan JS, Rahmani M, De Ceglia D, De Angelis C et al. Nonlinear transition-metal-dichalcogenide metasurfaces. In 14th Pacific Rim Conference on Lasers and Electro-Optics Pacific Rim (CLEO PR 2020) 1–2 (OPTIC, 2020);http://doi.org/10.1364/CLEOPR.2020.C2E_4.

    Google Scholar

    [5] Chen JH, Shen XQ, Tang SJ, Cao QT, Gong QH et al. Microcavity nonlinear optics with an organically functionalized surface. Phys Rev Lett 123, 173902 (2019). doi: 10.1103/PhysRevLett.123.173902

    CrossRef Google Scholar

    [6] Zhang SL, Liu LW, Ren S, Li ZL, Zhao YH et al. Recent advances in nonlinear optics for bio-imaging applications. Opto-Electron Adv 3, 200003 (2020). doi: 10.29026/oea.2020.200003

    CrossRef Google Scholar

    [7] Zhang J, Sun TT, Zhang C, Yang YW, Lin CG et al. Enhanced third-order optical nonlinearity and photon luminescence of Sn2+ in gold nanoparticles embedded chalcogenide glasses. J Mater Sci 55, 15882–15893 (2020). doi: 10.1007/s10853-020-05124-1

    CrossRef Google Scholar

    [8] Yang YW, Sun TT, Lin CG, Dai SX, Zhang XH et al. Performance modification of third-order optical nonlinearity of chalcogenide glasses by nanocrystallization. Ceram Int 45, 18767–18771 (2019). doi: 10.1016/j.ceramint.2019.06.103

    CrossRef Google Scholar

    [9] Zhang XY, Chen FF, Lin RQ, Huang YC, Dai SX et al. Investigation of third-order optical nonlinearities of copper doped germanium-gallium-sulfur chalcogenide glasses. J Non-Cryst Solids 475, 167–171 (2017). doi: 10.1016/j.jnoncrysol.2017.09.002

    CrossRef Google Scholar

    [10] Zhang YN, Wu JY, Qu Y, Yang YY, Jia LN et al. Graphene oxide for enhanced optical nonlinear performance in CMOS compatible integrated devices. Proc SPIE 11688, 116880W (2021).

    Google Scholar

    [11] Jia LN, Cui DD, Wu JY, Feng HF, Yang YY et al. BiOBr nanoflakes with strong Kerr nonlinearity towards hybrid integrated photonic devices. Proc SPIE 11282, 112820Q (2020).

    Google Scholar

    [12] Zhang YN, Wu JY, Yang YY, Qu Y, Jia LN et al. Enhanced kerr nonlinearity and nonlinear figure of merit in silicon nanowires integrated with 2D graphene oxide films. ACS Appl Mater Interfaces 12, 33094–33103 (2020). doi: 10.1021/acsami.0c07852

    CrossRef Google Scholar

    [13] Daniel MC, Astruc D. Gold nanoparticles:  assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev 104, 293–346 (2004). doi: 10.1021/cr030698+

    CrossRef Google Scholar

    [14] Zhou R, Zhang Z, Hong MH. The art of laser ablation in aeroengine: the crown jewel of modern industry. J Appl Phys 127, 080902 (2020). doi: 10.1063/1.5134813

    CrossRef Google Scholar

    [15] Khew SY, Tan CF, Yan HP, Yan SD, Thian ES et al. Nanosecond laser ablation for enhanced adhesion of CuO nanowires on copper substrate and its application for oil-water separation. Appl Surf Sci 465, 995–1002 (2019). doi: 10.1016/j.apsusc.2018.09.256

    CrossRef Google Scholar

    [16] Zhou R, Yin YC, Long D, Cui JQ, Yan HP et al. PVP-assisted laser ablation growth of Ag nanocubes anchored on reduced graphene oxide (rGO) for efficient photocatalytic CO2 reduction. Prog Nat Sci:Mater Int 29, 660–666 (2019). doi: 10.1016/j.pnsc.2019.11.001

    CrossRef Google Scholar

    [17] Yan HP, Xiao X, Chen ZL, Chen YS, Zhou R et al. Realization of adhesion enhancement of CuO nanowires growth on copper substrate by laser texturing. Opt Laser Technol 119, 105612 (2019). doi: 10.1016/j.optlastec.2019.105612

    CrossRef Google Scholar

    [18] Zhou R, Yin YC, Liu YJ, Cui JQ, Li XG et al. Surfactant mediated synthesis of structured metal nanoparticle by pulsed laser ablation for photocatalysis. Proc SPIE 10842, 108420F (2019).

    Google Scholar

    [19] Du ZR, Palina N, Chen J, Hong MH, Hoex B. Rear-side contact opening by laser ablation for industrial screen-printed aluminium local back surface field silicon wafer solar cells. Energy Procedia 25, 19–27 (2012). doi: 10.1016/j.egypro.2012.07.003

    CrossRef Google Scholar

    [20] Hong MH, Sugioka K, Wu DJ, Wong LL, Lu YF et al. Laser-induced-plasma-assisted ablation for glass microfabrication. Proc SPIE 4595, 138–146 (2001). doi: 10.1117/12.446603

    CrossRef Google Scholar

    [21] Lam HM, Hong MH, Yuan S, Chong TC. Laser ablation of GaN/sapphire structure for LED. Proc SPIE 4830, 114–118 (2003). doi: 10.1117/12.486561

    CrossRef Google Scholar

    [22] Hong MH, Xie Q, Lim BC, Sugioka K, Midorikawa K et al. Low resistivity glass metallization by laser induced plasma-assisted ablation. Proc SPIE 5662, 532–537 (2004).

    Google Scholar

    [23] Chichkov BN, Momma C, Nolte S, Von Alvensleben F, Tünnermann A. Femtosecond, picosecond and nanosecond laser ablation of solids. Appl Phys A 63, 109–115 (1996). doi: 10.1007/BF01567637

    CrossRef Google Scholar

    [24] Gamaly EG, Rode AV, Luther-Davies B, Tikhonchuk VT. Ablation of solids by femtosecond lasers: ablation mechanism and ablation thresholds for metals and dielectrics. Phys Plasmas 9, 949–957 (2002). doi: 10.1063/1.1447555

    CrossRef Google Scholar

    [25] Amendola V, Amans D, Ishikawa Y, Koshizaki N, Scirè S et al. Room-temperature laser synthesis in liquid of oxide, metal-oxide core-shells, and doped oxide nanoparticles. Chem – A Eur J 26, 9206–9242 (2020). doi: 10.1002/chem.202000686

    CrossRef Google Scholar

    [26] Yang GW. Laser ablation in liquids: applications in the synthesis of nanocrystals. Prog Mater Sci 52, 648–698 (2007). doi: 10.1016/j.pmatsci.2006.10.016

    CrossRef Google Scholar

    [27] Amendola V, Meneghetti M. Laser ablation synthesis in solution and size manipulation of noble metal nanoparticles. Phys Chem Chem Phys 11, 3805–3821 (2009). doi: 10.1039/b900654k

    CrossRef Google Scholar

    [28] Sakamoto M, Fujistuka M, Majima T. Light as a construction tool of metal nanoparticles: synthesis and mechanism. J Photochem Photobiol C:Photochem Rev 10, 33–56 (2009). doi: 10.1016/j.jphotochemrev.2008.11.002

    CrossRef Google Scholar

    [29] Rehbock C, Jakobi J, Gamrad L, Van Der Meer S, Tiedemann D et al. Current state of laser synthesis of metal and alloy nanoparticles as ligand-free reference materials for nano-toxicological assays. Beilstein J Nanotechnol 5, 1523–1541 (2014). doi: 10.3762/bjnano.5.165

    CrossRef Google Scholar

    [30] Asahi T, Sugiyama T, Masuhara H. Laser fabrication and spectroscopy of organic nanoparticles. Acc Chem Res 41, 1790–1798 (2008). doi: 10.1021/ar800125s

    CrossRef Google Scholar

    [31] Zhang DS, Gökce B, Barcikowski S. Laser synthesis and processing of colloids: fundamentals and applications. Chem Rev 117, 3990–4103 (2017). doi: 10.1021/acs.chemrev.6b00468

    CrossRef Google Scholar

    [32] González-Rubio G, Guerrero-Martínez A, Liz-Marzán LM. Reshaping, fragmentation, and assembly of gold nanoparticles assisted by pulse lasers. Acc Chem Res 49, 678–686 (2016). doi: 10.1021/acs.accounts.6b00041

    CrossRef Google Scholar

    [33] Kanitz A, Kalus MR, Gurevich EL, Ostendorf A, Barcikowski S et al. Review on experimental and theoretical investigations of the early stage, femtoseconds to microseconds processes during laser ablation in liquid-phase for the synthesis of colloidal nanoparticles. Plasma Sources Sci Technol 28, 103001 (2019). doi: 10.1088/1361-6595/ab3dbe

    CrossRef Google Scholar

    [34] Boyd RW. The intensity-dependent refractive index. In Nonlinear Optics 207–252 (2008);http://doi.org/10.1016/B978-0-12-369470-6.00004-6.

    Google Scholar

    [35] Shegai T, Li ZP, Dadosh T, Zhang ZY, Xu HX et al. Managing light polarization via plasmon–molecule interactions within an asymmetric metal nanoparticle trimer. Proc Natl Acad Sci USA 105, 16448–16453 (2008). doi: 10.1073/pnas.0808365105

    CrossRef Google Scholar

    [36] Sheik-bahae M, Said AA, Van Stryland EW. High-sensitivity, single-beam n2 measurements. Opt Lett 14, 955–957 (1989). doi: 10.1364/OL.14.000955

    CrossRef Google Scholar

    [37] Sheik-Bahae M, Said AA, Wei TH, Hagan DJ, Van Stryland EW. Sensitive measurement of optical nonlinearities using a single beam. IEEE J Quantum Electron 26, 760–769 (1990). doi: 10.1109/3.53394

    CrossRef Google Scholar

    [38] Zhang JM, Claverie J, Chaker M, Ma DL. Colloidal metal nanoparticles prepared by laser ablation and their applications. ChemPhysChem 18, 986–1006 (2017). doi: 10.1002/cphc.201601220

    CrossRef Google Scholar

    [39] Ahmed N, Darwish S, Alahmari AM. Laser ablation and laser-hybrid ablation processes: a review. Mater Manuf Process 31, 1121–1142 (2016). doi: 10.1080/10426914.2015.1048359

    CrossRef Google Scholar

    [40] Amendola V, Meneghetti M. What controls the composition and the structure of nanomaterials generated by laser ablation in liquid solution? Phys Chem Chem Phys 15, 3027–3046 (2013). doi: 10.1039/C2CP42895D

    CrossRef Google Scholar

    [41] Torrisi L, Torrisi A. Laser ablation of boron nitride in vacuum and in water. Radiat Eff Defects Solids 174, 76–91 (2019). doi: 10.1080/10420150.2019.1577850

    CrossRef Google Scholar

    [42] Chen LW, Hong MH. Laser Surface Structuring of Semiconductors and Functionalization. Handbook of Laser Micro- and Nano-Engineering. in (ed. Sugioka K, ) 1–45 (Springer International Publishing, 2020);http://doi.org/10.1007/978-3-319-69537-2_20-1.

    Google Scholar

    [43] Malinauskas M, Žukauskas A, Hasegawa S, Hayasaki Y, Mizeikis V et al. Ultrafast laser processing of materials: from science to industry. Light:Sci Appl 5, e16133 (2016). doi: 10.1038/lsa.2016.133

    CrossRef Google Scholar

    [44] Amendola V, Meneghetti M. Controlled size manipulation of free gold nanoparticles by laser irradiation and their facile bioconjugation. J Mater Chem 17, 4705–4710 (2007). doi: 10.1039/b709621f

    CrossRef Google Scholar

    [45] Xu KC, Zhang CT, Zhou R, Ji R, Hong MH. Hybrid micro/nano-structure formation by angular laser texturing of Si surface for surface enhanced Raman scattering. Opt Express 24, 10352–10358 (2016). doi: 10.1364/OE.24.010352

    CrossRef Google Scholar

    [46] Norton DP. Pulsed laser deposition of complex materials: progress toward applications. In Pulsed Laser Deposition of Thin Films: Applications‐Led Growth of Functional Materials 1–31 (2006); http://doi.org/10.1002/9780470052129.ch1.

    Google Scholar

    [47] Amendola V, Rizzi GA, Polizzi S, Meneghetti M. Synthesis of gold nanoparticles by laser ablation in toluene:  quenching and recovery of the surface plasmon absorption. J Phys Chem B 109, 23125–23128 (2005). doi: 10.1021/jp055783v

    CrossRef Google Scholar

    [48] Xiao J, Liu P, Wang CX, Yang GW. External field-assisted laser ablation in liquid: an efficient strategy for nanocrystal synthesis and nanostructure assembly. Prog Mater Sci 87, 140–220 (2017). doi: 10.1016/j.pmatsci.2017.02.004

    CrossRef Google Scholar

    [49] Kazemizadeh F, Malekfar R, Parvin P. Pulsed laser ablation synthesis of carbon nanoparticles in vacuum. J Phys Chem Solids 104, 252–256 (2017). doi: 10.1016/j.jpcs.2017.01.015

    CrossRef Google Scholar

    [50] Schinca DC, Scaffardi LB, Videla FA, Torchia GA, Moreno P et al. Silver–silver oxide core–shell nanoparticles by femtosecond laser ablation: core and shell sizing by extinction spectroscopy. J Phys D:Appl Phys 42, 215102 (2009). doi: 10.1088/0022-3727/42/21/215102

    CrossRef Google Scholar

    [51] Tan DZ, Zhou SF, Qiu JR, Khusro N. Preparation of functional nanomaterials with femtosecond laser ablation in solution. J Photochem Photobiol C:Photochem Rev 17, 50–68 (2013). doi: 10.1016/j.jphotochemrev.2013.08.002

    CrossRef Google Scholar

    [52] Menéndez-Manjón A, Barcikowski S. Hydrodynamic size distribution of gold nanoparticles controlled by repetition rate during pulsed laser ablation in water. Appl Surf Sci 257, 4285–4290 (2011). doi: 10.1016/j.apsusc.2010.12.037

    CrossRef Google Scholar

    [53] Santillán JMJ, Videla FA, Van Raap MBF, Schinca DC, Scaffardi LB. Analysis of the structure, configuration, and sizing of Cu and Cu oxide nanoparticles generated by fs laser ablation of solid target in liquids. J Appl Phys 113, 134305 (2013). doi: 10.1063/1.4798387

    CrossRef Google Scholar

    [54] Wang HQ, Jia LC, Li L, Li XY, Swiatkowska-Warkocka Z et al. Photomediated assembly of single crystalline silver spherical particles with enhanced electrochemical performance. J Mater Chem A 1, 692–698 (2013). doi: 10.1039/C2TA00389A

    CrossRef Google Scholar

    [55] Sajti CL, Sattari R, Chichkov B, Barcikowski S. Ablation efficiency of α-Al2O3 in liquid phase and ambient air by nanosecond laser irradiation. Appl Phys A 100, 203–206 (2010). doi: 10.1007/s00339-010-5572-9

    CrossRef Google Scholar

    [56] Hong MH, Koh ML, Zhu S, Lu YF, Chong TC. Steam-assisted laser ablation and its signal diagnostics. Appl Surf Sci 197–198, 911–914 (2002).

    Google Scholar

    [57] Boyer P, Meunier M. Modeling solvent influence on growth mechanism of nanoparticles (Au, Co) synthesized by surfactant free laser processes. J Phys Chem C 116, 8014–8019 (2012). doi: 10.1021/jp2092994

    CrossRef Google Scholar

    [58] Du ZR, Chen LW, Kao TS, Wu MX, Hong MH. Improved optical limiting performance of laser-ablation-generated metal nanoparticles due to silica-microsphere-induced local field enhancement. BEILSTEIN J Nanotechnol 6, 1199–1204 (2015). doi: 10.3762/bjnano.6.122

    CrossRef Google Scholar

    [59] Sylvestre JP, Kabashin AV, Sacher E, Meunier M. Femtosecond laser ablation of gold in water: influence of the laser-produced plasma on the nanoparticle size distribution. Appl Phys A 80, 753–758 (2005). doi: 10.1007/s00339-004-3081-4

    CrossRef Google Scholar

    [60] Tsuji T, Kakita T, Tsuji M. Preparation of nano-size particles of silver with femtosecond laser ablation in water. Appl Surf Sci 206, 314–320 (2003). doi: 10.1016/S0169-4332(02)01230-8

    CrossRef Google Scholar

    [61] Kuzmin PG, Shafee GA, Viau G, Warot-Fonrose B, Barberoglou M et al. Porous nanoparticles of Al and Ti generated by laser ablation in liquids. Appl Surf Sci 258, 9283–9287 (2012). doi: 10.1016/j.apsusc.2011.08.108

    CrossRef Google Scholar

    [62] Chen LW, Jiang XF, Guo ZM, Kao TS, Xu QH et al. Tuning optical nonlinearity of laser-ablation-synthesized silicon nanoparticles via doping concentration. J Nanomater 2014, 652829 (2014). doi: 10.1155/2014/652829

    CrossRef Google Scholar

    [63] Said A, Sajti L, Giorgio S, Marine W. Synthesis of nanohybrid materials by femtosecond laser ablation in liquid medium. J Phys Conf Ser 59, 055 (2007).

    Google Scholar

    [64] Semaltianos NG, Logothetidis S, Perrie W, Romani S, Potter RJ et al. CdTe nanoparticles synthesized by laser ablation. Appl Phys Lett 95, 033302 (2009). doi: 10.1063/1.3171941

    CrossRef Google Scholar

    [65] Semaltianos NG, Logothetidis S, Perrie W, Romani S, Potter RJ et al. II–VI semiconductor nanoparticles synthesized by laser ablation. Appl Phys A 94, 641 (2009). doi: 10.1007/s00339-008-4854-y

    CrossRef Google Scholar

    [66] Santagata A, De Bonis A, De Giacomo A, Dell’Aglio M, Laurita A et al. Carbon-based nanostructures obtained in water by ultrashort laser pulses. J Phys Chem C 115, 5160–5164 (2011). doi: 10.1021/jp1094239

    CrossRef Google Scholar

    [67] Teruki S, Tsuyoshi A, Hiroshi M. Formation of 10 nm-sized Oxo(phtalocyaninato)vanadium(IV) Particles by femtosecond laser ablation in water. Chem Lett 33, 724–725 (2004). doi: 10.1246/cl.2004.724

    CrossRef Google Scholar

    [68] Barcikowski S, Hahn A, Guggenheim M, Reimers K, Ostendorf A. Biocompatibility of nanoactuators: stem cell growth on laser-generated nickel–titanium shape memory alloy nanoparticles. J Nanoparticle Res 12, 1733–1742 (2010). doi: 10.1007/s11051-009-9834-4

    CrossRef Google Scholar

    [69] Yamamoto T, Shimotsuma Y, Sakakura M, Nishi M, Miura K et al. Intermetallic magnetic nanoparticle precipitation by femtosecond laser fragmentation in liquid. Langmuir 27, 8359–8364 (2011). doi: 10.1021/la201211e

    CrossRef Google Scholar

    [70] Stratakis E, Barberoglou M, Fotakis C, Viau G, Garcia C et al. Generation of Al nanoparticles via ablation of bulk Al in liquids with short laser pulses. Opt Express 17, 12650–12659 (2009). doi: 10.1364/OE.17.012650

    CrossRef Google Scholar

    [71] Podagatlapalli GK, Hamad S, Sreedhar S, Tewari SP, Rao SV. Fabrication and characterization of aluminum nanostructures and nanoparticles obtained using femtosecond ablation technique. Chem Phys Lett 530, 93–97 (2012). doi: 10.1016/j.cplett.2012.01.081

    CrossRef Google Scholar

    [72] Zhou Y, Chen LW, Du ZR, Cao Y, Li FP et al. Tunable optical nonlinearity of silicon nanoparticles in solid state organic matrix. Opt Mater Express 5, 1606–1612 (2015). doi: 10.1364/OME.5.001606

    CrossRef Google Scholar

    [73] Chen GX, Hong MH, He Q, ChenWZ, Elim HI et al. Formation, structure and nonlinear optical properties of carbon nanoparticles synthesized by pulsed laser ablation. Appl Phys A 79, 1079–1082 (2004). doi: 10.1007/s00339-004-2635-9

    CrossRef Google Scholar

    [74] Chen GX, Hong MX, Chong TC, Elim HI, Ma GH et al. Preparation of carbon nanoparticles with strong optical limiting properties by laser ablation in water. J Appl Phys 95, 1455–1459 (2004). doi: 10.1063/1.1637933

    CrossRef Google Scholar

    [75] Chen GX, Hong MH, Tan LS, Chong TC, Elim HI et al. Optical limiting phenomena of carbon nanoparticles prepared by laser ablation in liquids. J Phys:Conf Ser 59, 289–292 (2007). doi: 10.1088/1742-6596/59/1/060

    CrossRef Google Scholar

    [76] Josset S, Muller O, Schmidlin L, Pichot V, Spitzer D. Nonlinear optical properties of detonation nanodiamond in the near infrared: effects of concentration and size distribution. Diam Relat Mater 32, 66–71 (2013). doi: 10.1016/j.diamond.2012.12.001

    CrossRef Google Scholar

    [77] Amans D, Diouf M, Lam J, Ledoux G, Dujardin C. Origin of the nano-carbon allotropes in pulsed laser ablation in liquids synthesis. J Colloid Interface Sci 489, 114–125 (2017). doi: 10.1016/j.jcis.2016.08.017

    CrossRef Google Scholar

    [78] Yang GW, Wang JB, Liu QX. Preparation of nano-crystalline diamonds using pulsed laser induced reactive quenching. J Phys:Condens Matter 10, 7923–7927 (1998). doi: 10.1088/0953-8984/10/35/024

    CrossRef Google Scholar

    [79] Zhang CY, Wang CX, Yang YH, Yang GW. A nanoscaled thermodynamic approach in nucleation of CVD diamond on nondiamond surfaces. J Phys Chem B 108, 2589–2593 (2004). doi: 10.1021/jp036887d

    CrossRef Google Scholar

    [80] Kraus D, Ravasio A, Gauthier M, Gericke DO, Vorberger J et al. Nanosecond formation of diamond and lonsdaleite by shock compression of graphite. Nat Commun 7, 10970 (2016). doi: 10.1038/ncomms10970

    CrossRef Google Scholar

    [81] Pearce SRJ, Henley SJ, Claeyssens F, May PW, Hallam KR et al. Production of nanocrystalline diamond by laser ablation at the solid/liquid interface. Diam Relat Mater 13, 661–665 (2004). doi: 10.1016/j.diamond.2003.08.027

    CrossRef Google Scholar

    [82] Goh YW, Lu YF, Hong MH, Chong TC. Femtosecond laser ablation of copper. Proc SPIE 4830, 442–446 (2003). doi: 10.1117/12.486537

    CrossRef Google Scholar

    [83] Tsuji T, Iryo K, Watanabe N, Tsuji M. Preparation of silver nanoparticles by laser ablation in solution: influence of laser wavelength on particle size. Appl Surf Sci 202, 80–85 (2002). doi: 10.1016/S0169-4332(02)00936-4

    CrossRef Google Scholar

    [84] Barcikowski S, Walter J, Hahn A, Koch J, Haloui H et al. Picosecond and femtosecond laser machining may cause health risks related to nanoparticle emission. J Laser Micro/Nanoeng 4, 159–164 (2009). doi: 10.2961/jlmn.2009.03.0003

    CrossRef Google Scholar

    [85] Zijlstra P, Chon JWM, Gu M. White light scattering spectroscopy and electron microscopy of laser induced melting in single gold nanorods. Phys Chem Chem Phys 11, 5915–5921 (2009). doi: 10.1039/b905203h

    CrossRef Google Scholar

    [86] Link S, Burda C, Mohamed MB, Nikoobakht B, El-Sayed MA. Laser photothermal melting and fragmentation of gold nanorods:  energy and laser pulse-width dependence. J Phys Chem A 103, 1165–1170 (1999). doi: 10.1021/jp983141k

    CrossRef Google Scholar

    [87] Logunov SL, Ahmadi TS, El-Sayed MA, Khoury JT, Whetten RL. Electron dynamics of passivated gold nanocrystals probed by subpicosecond transient absorption spectroscopy. J Phys Chem B 101, 3713–3719 (1997). doi: 10.1021/jp962923f

    CrossRef Google Scholar

    [88] Cui H, Liu P, Yang GW. Noble metal nanoparticle patterning deposition using pulsed-laser deposition in liquid for surface-enhanced Raman scattering. Appl Phys Lett 89, 153124 (2006). doi: 10.1063/1.2359289

    CrossRef Google Scholar

    [89] Raveendran P, Fu J, Wallen SL. A simple and “green” method for the synthesis of Au, Ag, and Au–Ag alloy nanoparticles. Green Chem 8, 34–38 (2006). doi: 10.1039/B512540E

    CrossRef Google Scholar

    [90] Lin XZ, Liu P, Yu JM, Yang GW. Synthesis of CuO nanocrystals and sequential assembly of nanostructures with shape-dependent optical absorption upon laser ablation in liquid. J Phys Chem C 113, 17543–17547 (2009). doi: 10.1021/jp907237q

    CrossRef Google Scholar

    [91] Boltaev GS, Ganeev RA, Krishnendu PS, Zhang K, Guo CL. Nonlinear optical characterization of copper oxide nanoellipsoids. Sci Rep 9, 11414 (2019). doi: 10.1038/s41598-019-47941-8

    CrossRef Google Scholar

    [92] Liu CH, Hong MH, Zhou Y, Chen GX, Saw MM et al. Synthesis and characterization of Ag deposited TiO2 particles by laser ablation in water. Phys Scr 2007, 326–328 (2007).

    Google Scholar

    [93] Riabinina D, Durand C, Chaker M, Rowell N, Rosei F. A novel approach to the synthesis of photoluminescent germanium nanoparticles by reactive laser ablation. Nanotechnology 17, 2152–2155 (2006). doi: 10.1088/0957-4484/17/9/012

    CrossRef Google Scholar

    [94] Yoon HR, Jo W, Lee EH, Lee JH, Kim M et al. Generation of phase-change Ge–Sb–Te nanoparticles by pulsed laser ablation. J Non-Cryst Solids 351, 3430–3434 (2005). doi: 10.1016/j.jnoncrysol.2005.09.007

    CrossRef Google Scholar

    [95] Zhu S, Hong MH, Koh ML, Lu YF. Laser ablation of Si in water and ambient air. Proc SPIE 4426, 39–42 (2002). doi: 10.1117/12.456836

    CrossRef Google Scholar

    [96] He Y, Fan CH, Lee ST. Silicon nanostructures for bioapplications. Nano Today 5, 282–295 (2010). doi: 10.1016/j.nantod.2010.06.008

    CrossRef Google Scholar

    [97] Sánchez CJE, Ramírez KME, Delgado SMA, De Guevara HPL, Contreras JC et al. Determination of non-linear optical properties of TiO2 nanoparticles functionalized with an azo-triphenylmethane dye using the z-scan technique. In Latin America Optics and Photonics Conference Tu4A. 11 (Optical Society of America, 2018);http://doi.org/10.1364/LAOP.2018.Tu4A.11.

    Google Scholar

    [98] De Boni L, Barbano EC, De Assumpção TA, Misoguti L, Kassab LRP et al. Femtosecond third-order nonlinear spectra of lead-germanium oxide glasses containing silver nanoparticles. Opt Express 20, 6844–6850 (2012). doi: 10.1364/OE.20.006844

    CrossRef Google Scholar

    [99] Liu P, Wang CX, Chen XY, Yang GW. Controllable fabrication and cathodoluminescence performance of high-index facets GeO2 micro- and nanocubes and spindles upon electrical-field-assisted laser ablation in liquid. J Phys Chem C 112, 13450–13456 (2008). doi: 10.1021/jp802529r

    CrossRef Google Scholar

    [100] Tian ZF, Liang CH, Liu J, Zhang HM, Zhang LD. Zinc stannate nanocubes and nanourchins with high photocatalytic activity for methyl orange and 2, 5-DCP degradation. J Mater Chem 22, 17210–17214 (2012). doi: 10.1039/c2jm32406g

    CrossRef Google Scholar

    [101] Wu J, Jia LN, Zhang YN, Qu Y, Jia BH et al. Graphene oxide for integrated photonics and flat optics. Adv Mater 33, 2006415 (2021). doi: 10.1002/adma.202006415

    CrossRef Google Scholar

    [102] Loh KP, Bao QL, Eda G, Chhowalla M. Graphene oxide as a chemically tunable platform for optical applications. Nat Chem 2, 1015–1024 (2010). doi: 10.1038/nchem.907

    CrossRef Google Scholar

    [103] Zheng XR, Jia BH, Chen X, Gu M. In situ third-order non-linear responses during laser reduction of graphene oxide thin films towards on-chip non-linear photonic devices. Adv Mater 26, 2699–2703 (2014). doi: 10.1002/adma.201304681

    CrossRef Google Scholar

    [104] Tan Y, Chen LW, Wang D, Chen YX, Akhmadaliev S et al. Tunable picosecond laser pulses via the contrast of two reverse saturable absorption phases in a waveguide platform. Sci Rep 6, 26176 (2016). doi: 10.1038/srep26176

    CrossRef Google Scholar

    [105] Huang HZ, Li JH, Deng J, Ge Y, Liu HG et al. Passively Q-switched Tm/Ho composite laser. Opto-Electron Adv 3, 190031 (2020).

    Google Scholar

    [106] Zhang XJ, Li WW, Li J, Xu HY, Cai ZP et al. Mid-infrared all-fiber gain-switched pulsed laser at 3 μm. Opto-Electron Adv 3, 190032 (2020).

    Google Scholar

    [107] Wang F, Han Y, Lim CS, Lu YH, Wang J et al. Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping. Nature 463, 1061–1065 (2010). doi: 10.1038/nature08777

    CrossRef Google Scholar

    [108] Wang SH, Li YH, Little BE, Wang LR, Wang X et al. Athermal third harmonic generation in micro-ring resonators. Opto-Electron Adv 3, 200028 (2020).

    Google Scholar

    [109] Hou YH, Liu B, Liu Y, Zhou YH, Song TT, Zhou Q et al. Ultra-low cost Ti powder for selective laser melting additive manufacturing and superior mechanical properties associated. Opto-Electron Adv 2, 180028 (2019).

    Google Scholar

    [110] Liu XQ, Bai BF, Chen QD, Sun HB. Etching-assisted femtosecond laser modification of hard materials. Opto-Electron Adv 2, 190021 (2019).

    Google Scholar

    [111] Xie XZ, Zhou CX, Wei X, Hu W, Ren QL. Laser machining of transparent brittle materials: from machining strategies to applications. Opto-Electron Adv 2, 180017 (2019).

    Google Scholar

    [112] Niu YX, Wu DS, Zhang P, Duan XF. Application of optical limiting materials in laser seeker. Proc SPIE 5646, 297–302 (2005).

    Google Scholar

    [113] Ma WZ, Zhao DS, Liu RM, Wang TS, Yuan Q et al. Observation and optimization of 2 μm mode-locked pulses in all-fiber net anomalous dispersion laser cavity. Opto-Electron Adv 3, 200001 (2020).

    Google Scholar

    [114] Streubel R, Barcikowski S, Gökce B. Continuous multigram nanoparticle synthesis by high-power, high-repetition-rate ultrafast laser ablation in liquids. Opt Lett 41, 1486–1489 (2016). doi: 10.1364/OL.41.001486

    CrossRef Google Scholar

    [115] Chen LW, Yin YM, Li Y, Hong MH. Multifunctional inverse sensing by spatial distribution characterization of scattering photons. Opto-Electron Adv 2, 190019 (2019).

    Google Scholar

    [116] Ding Y, Yang LJ, Hong MH. Enhancement of pulsed laser ablation assisted with continuous wave laser irradiation. Sci China Phys, Mech Astron 62, 34211 (2019). doi: 10.1007/s11433-018-9288-1

    CrossRef Google Scholar

    [117] Zhou R, Lin SD, Ding Y, Yang H, Ong YKK et al. Enhancement of laser ablation via interacting spatial double-pulse effect. Opto-Electron Adv 1, 180014 (2018).

    Google Scholar

    [118] Lin ZY, Ji LF, Hong MH. Enhancement of femtosecond laser-induced surface ablation via temporal overlapping double-pulse irradiation. Photonics Res 8, 271–278 (2020). doi: 10.1364/PRJ.379254

    CrossRef Google Scholar

    [119] Hong MH, Ng KY, Xie Q, Shi LP, Chong TC. Pulsed laser ablation in a cooled liquid environment. Appl Phys A 93, 153–157 (2008). doi: 10.1007/s00339-008-4675-z

    CrossRef Google Scholar

    [120] Yang GW, Wang JB. Pulsed-laser-induced transformation path of graphite to diamond via an intermediate rhombohedral graphite. Appl Phys A 72, 475–479 (2001). doi: 10.1007/s003390000537

    CrossRef Google Scholar

    [121] Singh A, Kutscher HL, Bulmahn JC, Mahajan SD, He GS et al. Laser ablation for pharmaceutical nanoformulations: multi-drug nanoencapsulation and theranostics for HIV. Nanomedicine Nanotechnol, Biol Med 25, 102172 (2020). doi: 10.1016/j.nano.2020.102172

    CrossRef Google Scholar

    [122] Chen GX, Hong MH, Lan B, Wang ZB, Lu YF et al. A convenient way to prepare magnetic colloids by direct Nd: YAG laser ablation. Appl Surf Sci 228, 169–175 (2004). doi: 10.1016/j.apsusc.2004.01.007

    CrossRef Google Scholar

    [123] Ong TS, Lee SS, Van LH, Hong MH, Chong TC. Optical limiting properties of silver nanoparticles fabricated by laser ablation. Proc SPIE 5662, 67–70 (2004). doi: https://doi.org/10.1117/12.595840

    CrossRef Google Scholar

    [124] Jin YJ, Chen LW, Wu MX, Lu XZ, Zhou R et al. Enhanced saturable absorption of the graphene oxide film via photonic nanojets. Opt Mater Express 6, 1114–1121 (2016). doi: 10.1364/OME.6.001114

    CrossRef Google Scholar

    [125] Chen LW, Zheng XR, Du ZR, Jia BH, Gu M et al. A frozen matrix hybrid optical nonlinear system enhanced by a particle lens. Nanoscale 7, 14982–14988 (2015). doi: 10.1039/C5NR03304G

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(8)

Tables(2)

Article Metrics

Article views(17802) PDF downloads(650) Cited by(0)

Access History

Other Articles By Authors

Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint