Liu K, Lin ZY, Han B et al. Non-volatile dynamically switchable color display via chalcogenide stepwise cavity resonators. Opto-Electron Adv 7, 230033 (2024). doi: 10.29026/oea.2024.230033
Citation: Liu K, Lin ZY, Han B et al. Non-volatile dynamically switchable color display via chalcogenide stepwise cavity resonators. Opto-Electron Adv 7, 230033 (2024). doi: 10.29026/oea.2024.230033

Article Open Access

Non-volatile dynamically switchable color display via chalcogenide stepwise cavity resonators

More Information
  • High-resolution multi-color printing relies upon pixelated optical nanostructures, which is crucial to promote color display by producing nonbleaching colors, yet requires simplicity in fabrication and dynamic switching. Antimony trisulfide (Sb2S3) is a newly rising chalcogenide material that possesses prompt and significant transition of its optical characteristics in the visible region between amorphous and crystalline phases, which holds the key to color-varying devices. Herein, we proposed a dynamically switchable color printing method using Sb2S3-based stepwise pixelated Fabry-Pérot (FP) cavities with various cavity lengths. The device was fabricated by employing a direct laser patterning that is a less time-consuming, more approachable, and low-cost technique. As switching the state of Sb2S3 between amorphous and crystalline, the multi-color of stepwise pixelated FP cavities can be actively changed. The color variation is due to the profound change in the refractive index of Sb2S3 over the visible spectrum during its phase transition. Moreover, we directly fabricated sub-50 nm nano-grating on ultrathin Sb2S3 laminate via microsphere 800-nm femtosecond laser irradiation in far field. The minimum feature size can be further decreased down to ~45 nm (λ/17) by varying the thickness of Sb2S3 film. Ultrafast switchable Sb2S3 photonic devices can take one step toward the next generation of inkless erasable papers or displays and enable information encryption, camouflaging surfaces, anticounterfeiting, etc. Importantly, our work explores the prospects of rapid and rewritable fabrication of periodic structures with nano-scale resolution and can serve as a guideline for further development of chalcogenide-based photonics components.
  • 加载中
  • [1] Kumar K, Duan HG, Hegde RS et al. Printing colour at the optical diffraction limit. Nat Nanotechnol 7, 557–561 (2012). doi: 10.1038/nnano.2012.128

    CrossRef Google Scholar

    [2] Frey L, Parrein P, Raby J et al. Color filters including infrared cut-off integrated on CMOS image sensor. Opt Express 19, 13073–13080 (2011). doi: 10.1364/OE.19.013073

    CrossRef Google Scholar

    [3] Park HJ, Xu T, Lee JY et al. Photonic color filters integrated with organic solar cells for energy harvesting. ACS Nano 5, 7055–7060 (2011). doi: 10.1021/nn201767e

    CrossRef Google Scholar

    [4] Taguchi H, Enokido M. Technology of color filter materials for image sensor. International Image Sensor Workshop (IISW) , 34-37 (2011).

    Google Scholar

    [5] Chen YQ, Duan XY, Matuschek M et al. Dynamic color displays using stepwise cavity resonators. Nano Lett 17, 5555–5560 (2017). doi: 10.1021/acs.nanolett.7b02336

    CrossRef Google Scholar

    [6] Fu R, Chen KX, Li ZL et al. Metasurface-based nanoprinting: principle, design and advances. Opto-Electron Sci 1, 220011 (2022). doi: 10.29026/oes.2022.220011

    CrossRef Google Scholar

    [7] Zijlstra P, Chon JWM, Gu M. Five-dimensional optical recording mediated by surface plasmons in gold nanorods. Nature 459, 410–413 (2009). doi: 10.1038/nature08053

    CrossRef Google Scholar

    [8] Yang X, Lin Y, Wu TZ et al. An overview on the principle of inkjet printing technique and its application in micro-display for augmented/virtual realities. Opto-Electron Adv 5, 210123 (2022). doi: 10.29026/oea.2022.210123

    CrossRef Google Scholar

    [9] James TD, Mulvaney P, Roberts A. The plasmonic pixel: large area, wide gamut color reproduction using aluminum nanostructures. Nano Lett 16, 3817–3823 (2016). doi: 10.1021/acs.nanolett.6b01250

    CrossRef Google Scholar

    [10] Li ZB, Clark AW, Cooper JM. Dual color plasmonic pixels create a polarization controlled nano color palette. ACS Nano 10, 492–498 (2016). doi: 10.1021/acsnano.5b05411

    CrossRef Google Scholar

    [11] Xu T, Walter EC, Agrawal A et al. High-contrast and fast electrochromic switching enabled by plasmonics. Nat Commun 7, 10479 (2016). doi: 10.1038/ncomms10479

    CrossRef Google Scholar

    [12] Ellenbogen T, Seo K, Crozier KB. Chromatic plasmonic polarizers for active visible color filtering and polarimetry. Nano Lett 12, 1026–1031 (2012). doi: 10.1021/nl204257g

    CrossRef Google Scholar

    [13] You H, Steckl AJ. Three-color electrowetting display device for electronic paper. Appl Phys Lett 97, 023514 (2010). doi: 10.1063/1.3464963

    CrossRef Google Scholar

    [14] Franklin D, Chen Y, Vazquez-Guardado A et al. Polarization-independent actively tunable colour generation on imprinted plasmonic surfaces. Nat Commun 6, 7337 (2015). doi: 10.1038/ncomms8337

    CrossRef Google Scholar

    [15] Wang WS, Xie N, He L et al. Photocatalytic colour switching of redox dyes for ink-free light-printable rewritable paper. Nat Commun 5, 5459 (2014). doi: 10.1038/ncomms6459

    CrossRef Google Scholar

    [16] Stec GJ, Lauchner A, Cui Y et al. Multicolor electrochromic devices based on molecular plasmonics. ACS Nano 11, 3254–3261 (2017). doi: 10.1021/acsnano.7b00364

    CrossRef Google Scholar

    [17] Duan XY, Kamin S, Liu N. Dynamic plasmonic colour display. Nat Commun 8, 14606 (2017). doi: 10.1038/ncomms14606

    CrossRef Google Scholar

    [18] Cho H, Han S, Kwon J et al. Self-assembled stretchable photonic crystal for a tunable color filter. Opt Lett 43, 3501–3504 (2018). doi: 10.1364/OL.43.003501

    CrossRef Google Scholar

    [19] Shang SL, Zhang QH, Wang HZ et al. Fabrication of magnetic field induced structural colored films with tunable colors and its application on security materials. J Colloid Interface Sci 485, 18–24 (2017). doi: 10.1016/j.jcis.2016.09.016

    CrossRef Google Scholar

    [20] Huang MT, Jun Tan A, Büttner F et al. Voltage-gated optics and plasmonics enabled by solid-state proton pumping. Nat Commun 10, 5030 (2019). doi: 10.1038/s41467-019-13131-3

    CrossRef Google Scholar

    [21] Lankhorst MHR, Ketelaars BWSMM, Wolters RAM. Low-cost and nanoscale non-volatile memory concept for future silicon chips. Nat Mater 4, 347–352 (2005). doi: 10.1038/nmat1350

    CrossRef Google Scholar

    [22] Kolobov AV, Fons P, Frenkel AI et al. Understanding the phase-change mechanism of rewritable optical media. Nat Mater 3, 703–708 (2004). doi: 10.1038/nmat1215

    CrossRef Google Scholar

    [23] Schlich FF, Zalden P, Lindenberg AM et al. Color switching with enhanced optical contrast in ultrathin phase-change materials and semiconductors induced by femtosecond laser pulses. ACS Photonics 2, 178–182 (2015). doi: 10.1021/ph500402r

    CrossRef Google Scholar

    [24] Julian MN, Williams C, Borg S et al. Reversible optical tuning of GeSbTe phase-change metasurface spectral filters for mid-wave infrared imaging. Optica 7, 746–754 (2020). doi: 10.1364/OPTICA.392878

    CrossRef Google Scholar

    [25] Lin ZY, Liu K, Cao T et al. Microsphere femtosecond laser sub-50 nm structuring in far field via non-linear absorption. Opto-Electron Adv 6, 230029 (2023). doi: 10.29026/oea.2023.230029

    CrossRef Google Scholar

    [26] Kats MA, Blanchard R, Genevet P et al. Nanometre optical coatings based on strong interference effects in highly absorbing media. Nat Mater 12, 20–24 (2013). doi: 10.1038/nmat3443

    CrossRef Google Scholar

    [27] Andreeva YM, Luong VC, Lutoshina DS et al. Laser coloration of metals in visual art and design. Opt Mater Express 9, 1310–1319 (2019). doi: 10.1364/OME.9.001310

    CrossRef Google Scholar

    [28] Ríos C, Hosseini P, Taylor RA et al. Color depth modulation and resolution in phase-change material nanodisplays. Adv Mater 28, 4720–4726 (2016). doi: 10.1002/adma.201506238

    CrossRef Google Scholar

    [29] Yoo S, Gwon T, Eom T et al. Multicolor changeable optical coating by adopting multiple layers of ultrathin phase change material film. ACS Photonics 3, 1265–1270 (2016). doi: 10.1021/acsphotonics.6b00246

    CrossRef Google Scholar

    [30] Dong WL, Liu HL, Behera JK et al. Wide bandgap phase change material tuned visible photonics. Adv Funct Mater 29, 1806181 (2019). doi: 10.1002/adfm.201806181

    CrossRef Google Scholar

    [31] Kondrotas R, Chen C, Tang J. Sb2S3 solar cells. Joule 2, 857–878 (2018). doi: 10.1016/j.joule.2018.04.003

    CrossRef Google Scholar

    [32] Liu HL, Dong WL, Wang H et al. Rewritable color nanoprints in antimony trisulfide films. Sci Adv 6, eabb7171 (2020). doi: 10.1126/sciadv.abb7171

    CrossRef Google Scholar

    [33] Luo XG, Tsai D, Gu M et al. Extraordinary optical fields in nanostructures: from sub-diffraction-limited optics to sensing and energy conversion. Chem Soc Rev 48, 2458–2494 (2019). doi: 10.1039/C8CS00864G

    CrossRef Google Scholar

    [34] Zhu XL, Engelberg J, Remennik S et al. Resonant laser printing of optical metasurfaces. Nano Lett 22, 2786–2792 (2022). doi: 10.1021/acs.nanolett.1c04874

    CrossRef Google Scholar

    [35] Chamoli SK, Verma G, Singh SC et al. Phase change material-based nano-cavity as an efficient optical modulator. Nanotechnology 32, 095207 (2021). doi: 10.1088/1361-6528/abcb7a

    CrossRef Google Scholar

    [36] Lu L, Dong WL, Behera JK et al. Inter-diffusion of plasmonic metals and phase change materials. J Mater Sci 54, 2814–2823 (2019). doi: 10.1007/s10853-018-3066-x

    CrossRef Google Scholar

    [37] Lin ZY, Hong MH. Femtosecond laser precision engineering: from micron, submicron, to nanoscale. Ultrafast Sci 2021, 9783514 (2021). doi: 10.34133/2021/9783514

    CrossRef Google Scholar

    [38] Ahmed N, Darwish S, Alahmari AM. Laser ablation and laser-hybrid ablation processes: a review. Mater Manuf Processes 31, 1121–1142 (2016). doi: 10.1080/10426914.2015.1048359

    CrossRef Google Scholar

    [39] Liu HG, Lin WX, Hong MH. Surface coloring by laser irradiation of solid substrates. APL Photonics 4, 051101 (2019). doi: 10.1063/1.5089778

    CrossRef Google Scholar

    [40] Paik T, Hong SH, Gaulding EA et al. Solution-processed phase-change VO2 metamaterials from colloidal vanadium oxide (VOX) nanocrystals. ACS Nano 8, 797–806 (2014). doi: 10.1021/nn4054446

    CrossRef Google Scholar

    [41] Bayliss P, Nowacki W. Refinement of the crystal structure of stibnite, Sb2S3. Z Kristallogr Cryst Mater 135, 308–315 (1972). doi: 10.1524/zkri.1972.135.16.308

    CrossRef Google Scholar

    [42] Kelley CK. Thermal Analysis Study of Antimony Sulfides (PN, 1989).

    Google Scholar

    [43] Massalski TB. Binary Alloy Phase Diagrams 2nd ed (ASM International, Materials Park, 1990).

    Google Scholar

    [44] Mao LB, Li Y, Li GX et al. Reversible switching of electromagnetically induced transparency in phase change metasurfaces. Adv Photonics 2, 056004 (2020). doi: 10.1117/1.AP.2.5.056004

    CrossRef Google Scholar

    [45] Shportko K, Kremers S, Woda M et al. Resonant bonding in crystalline phase-change materials. Nat Mater 7, 653–658 (2008). doi: 10.1038/nmat2226

    CrossRef Google Scholar

    [46] Hosseini P, Wright CD, Bhaskaran H. An optoelectronic framework enabled by low-dimensional phase-change films. Nature 511, 206–211 (2014). doi: 10.1038/nature13487

    CrossRef Google Scholar

    [47] Ji HK, Tong H, Qian H et al. Color printing enabled by phase change materials on paper substrate. AIP Adv 7, 125024 (2017). doi: 10.1063/1.5009945

    CrossRef Google Scholar

    [48] Ji HK, Tong H, Qian H et al. Non-binary colour modulation for display device based on phase change materials. Sci Rep 6, 39206 (2016). doi: 10.1038/srep39206

    CrossRef Google Scholar

    [49] Etchegoin PG, Le Ru EC, Meyer M. An analytic model for the optical properties of gold. J Chem Phys 125, 164705 (2006). doi: 10.1063/1.2360270

    CrossRef Google Scholar

    [50] El Kurdi M, David S, Checoury X et al. Two-dimensional photonic crystals with pure germanium-on-insulator. Opt Commun 281, 846–850 (2008). doi: 10.1016/j.optcom.2007.10.008

    CrossRef Google Scholar

    [51] Lee KT, Seo S, Lee JY et al. Strong resonance effect in a lossy medium-based optical cavity for angle robust spectrum filters. Adv Mater 26, 6324–6328 (2014). doi: 10.1002/adma.201402117

    CrossRef Google Scholar

    [52] Efthimiopoulos I, Buchan C, Wang YJ. Structural properties of Sb2S3 under pressure: evidence of an electronic topological transition. Sci Rep 6, 24246 (2016). doi: 10.1038/srep24246

    CrossRef Google Scholar

    [53] Garcia RGA, Avendaño CAM, Pal M et al. Antimony sulfide (Sb2S3) thin films by pulse electrodeposition: effect of thermal treatment on structural, optical and electrical properties. Mater Sci Semicond Process 44, 91–100 (2016). doi: 10.1016/j.mssp.2015.12.018

    CrossRef Google Scholar

    [54] Hou GZ, Wang ZY, Ma HG et al. High-temperature stable plasmonic and cavity resonances in metal nanoparticle-decorated silicon nanopillars for strong broadband absorption in photothermal applications. Nanoscale 11, 14777–14784 (2019). doi: 10.1039/C9NR05019A

    CrossRef Google Scholar

    [55] Palik ED. Handbook of Optical Constants of Solids (Elsevier, Amsterdam, 1985).

    Google Scholar

    [56] Fan ZB, Shao ZK, Xie MY et al. Silicon nitride metalenses for close-to-one numerical aperture and wide-angle visible imaging. Phys Rev Appl 10, 014005 (2018). doi: 10.1103/PhysRevApplied.10.014005

    CrossRef Google Scholar

    [57] Liu K, Lian M, Qin KR et al. Active tuning of electromagnetically induced transparency from chalcogenide-only metasurface. Light Adv Manuf 2, 251–261 (2021). doi: 10.37188/lam.2021.019

    CrossRef Google Scholar

    [58] Ni ZH, Wang HM, Kasim J et al. Graphene thickness determination using reflection and contrast spectroscopy. Nano Lett 7, 2758–2763 (2007). doi: 10.1021/nl071254m

    CrossRef Google Scholar

    [59] Gao K, Du K, Tian SM et al. Intermediate phase-change states with improved cycling durability of Sb2S3 by femtosecond multi-pulse laser irradiation. Adv Funct Mater 31, 2103327 (2021). doi: 10.1002/adfm.202103327

    CrossRef Google Scholar

    [60] Wang LX, Wan XX, Xiao GS et al. Sequential adaptive estimation for spectral reflectance based on camera responses. Opt Express 28, 25830–25842 (2020). doi: 10.1364/OE.389614

    CrossRef Google Scholar

    [61] Ma ZC, Zhang YL, Han B et al. Femtosecond-laser direct writing of metallic micro/nanostructures: from fabrication strategies to future applications. Small Methods 2, 1700413 (2018). doi: 10.1002/smtd.201700413

    CrossRef Google Scholar

    [62] Qin L, Huang YQ, Xia F et al. 5 nm nanogap electrodes and arrays by super-resolution laser lithography. Nano Lett 20, 4916–4923 (2020). doi: 10.1021/acs.nanolett.0c00978

    CrossRef Google Scholar

    [63] Liu HG, Lin WX, Hong MH. Hybrid laser precision engineering of transparent hard materials: challenges, solutions and applications. Light Sci Appl 10, 162 (2021). doi: 10.1038/s41377-021-00596-5

    CrossRef Google Scholar

    [64] Lin ZY, Ji LF, Hong MH. Approximately 30 nm nanogroove formation on single crystalline silicon surface under pulsed nanosecond laser irradiation. Nano Lett 22, 70057010 (2022). doi: 10.1021/acs.nanolett.2c01794

    CrossRef Google Scholar

    [65] Ma ZC, Zhang YL, Han B et al. Femtosecond laser programmed artificial musculoskeletal systems. Nat Commun 11, 4536 (2020). doi: 10.1038/s41467-020-18117-0

    CrossRef Google Scholar

    [66] Lin ZY, Liu HG, Ji LF et al. Realization of ~10 nm features on semiconductor surfaces via femtosecond laser direct patterning in far field and in ambient air. Nano Lett 20, 4947–4952 (2020). doi: 10.1021/acs.nanolett.0c01013

    CrossRef Google Scholar

    [67] Wang HT, Hao CL, Lin H et al. Generation of super-resolved optical needle and multifocal array using graphene oxide metalenses. Opto-Electron Adv 4, 200031 (2021). doi: 10.29026/oea.2021.200031

    CrossRef Google Scholar

  • Supplementary information for Dynamic interactive bitwise meta-holography with ultra-high computational and display frame rates
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(5)

Article Metrics

Article views() PDF downloads() Cited by()

Access History

Other Articles By Authors

Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint