Citation: | Liu K, Lin ZY, Han B et al. Non-volatile dynamically switchable color display via chalcogenide stepwise cavity resonators. Opto-Electron Adv 7, 230033 (2024). doi: 10.29026/oea.2024.230033 |
[1] | Kumar K, Duan HG, Hegde RS et al. Printing colour at the optical diffraction limit. Nat Nanotechnol 7, 557–561 (2012). doi: 10.1038/nnano.2012.128 |
[2] | Frey L, Parrein P, Raby J et al. Color filters including infrared cut-off integrated on CMOS image sensor. Opt Express 19, 13073–13080 (2011). doi: 10.1364/OE.19.013073 |
[3] | Park HJ, Xu T, Lee JY et al. Photonic color filters integrated with organic solar cells for energy harvesting. ACS Nano 5, 7055–7060 (2011). doi: 10.1021/nn201767e |
[4] | Taguchi H, Enokido M. Technology of color filter materials for image sensor. International Image Sensor Workshop (IISW) , 34-37 (2011). |
[5] | Chen YQ, Duan XY, Matuschek M et al. Dynamic color displays using stepwise cavity resonators. Nano Lett 17, 5555–5560 (2017). doi: 10.1021/acs.nanolett.7b02336 |
[6] | Fu R, Chen KX, Li ZL et al. Metasurface-based nanoprinting: principle, design and advances. Opto-Electron Sci 1, 220011 (2022). doi: 10.29026/oes.2022.220011 |
[7] | Zijlstra P, Chon JWM, Gu M. Five-dimensional optical recording mediated by surface plasmons in gold nanorods. Nature 459, 410–413 (2009). doi: 10.1038/nature08053 |
[8] | Yang X, Lin Y, Wu TZ et al. An overview on the principle of inkjet printing technique and its application in micro-display for augmented/virtual realities. Opto-Electron Adv 5, 210123 (2022). doi: 10.29026/oea.2022.210123 |
[9] | James TD, Mulvaney P, Roberts A. The plasmonic pixel: large area, wide gamut color reproduction using aluminum nanostructures. Nano Lett 16, 3817–3823 (2016). doi: 10.1021/acs.nanolett.6b01250 |
[10] | Li ZB, Clark AW, Cooper JM. Dual color plasmonic pixels create a polarization controlled nano color palette. ACS Nano 10, 492–498 (2016). doi: 10.1021/acsnano.5b05411 |
[11] | Xu T, Walter EC, Agrawal A et al. High-contrast and fast electrochromic switching enabled by plasmonics. Nat Commun 7, 10479 (2016). doi: 10.1038/ncomms10479 |
[12] | Ellenbogen T, Seo K, Crozier KB. Chromatic plasmonic polarizers for active visible color filtering and polarimetry. Nano Lett 12, 1026–1031 (2012). doi: 10.1021/nl204257g |
[13] | You H, Steckl AJ. Three-color electrowetting display device for electronic paper. Appl Phys Lett 97, 023514 (2010). doi: 10.1063/1.3464963 |
[14] | Franklin D, Chen Y, Vazquez-Guardado A et al. Polarization-independent actively tunable colour generation on imprinted plasmonic surfaces. Nat Commun 6, 7337 (2015). doi: 10.1038/ncomms8337 |
[15] | Wang WS, Xie N, He L et al. Photocatalytic colour switching of redox dyes for ink-free light-printable rewritable paper. Nat Commun 5, 5459 (2014). doi: 10.1038/ncomms6459 |
[16] | Stec GJ, Lauchner A, Cui Y et al. Multicolor electrochromic devices based on molecular plasmonics. ACS Nano 11, 3254–3261 (2017). doi: 10.1021/acsnano.7b00364 |
[17] | Duan XY, Kamin S, Liu N. Dynamic plasmonic colour display. Nat Commun 8, 14606 (2017). doi: 10.1038/ncomms14606 |
[18] | Cho H, Han S, Kwon J et al. Self-assembled stretchable photonic crystal for a tunable color filter. Opt Lett 43, 3501–3504 (2018). doi: 10.1364/OL.43.003501 |
[19] | Shang SL, Zhang QH, Wang HZ et al. Fabrication of magnetic field induced structural colored films with tunable colors and its application on security materials. J Colloid Interface Sci 485, 18–24 (2017). doi: 10.1016/j.jcis.2016.09.016 |
[20] | Huang MT, Jun Tan A, Büttner F et al. Voltage-gated optics and plasmonics enabled by solid-state proton pumping. Nat Commun 10, 5030 (2019). doi: 10.1038/s41467-019-13131-3 |
[21] | Lankhorst MHR, Ketelaars BWSMM, Wolters RAM. Low-cost and nanoscale non-volatile memory concept for future silicon chips. Nat Mater 4, 347–352 (2005). doi: 10.1038/nmat1350 |
[22] | Kolobov AV, Fons P, Frenkel AI et al. Understanding the phase-change mechanism of rewritable optical media. Nat Mater 3, 703–708 (2004). doi: 10.1038/nmat1215 |
[23] | Schlich FF, Zalden P, Lindenberg AM et al. Color switching with enhanced optical contrast in ultrathin phase-change materials and semiconductors induced by femtosecond laser pulses. ACS Photonics 2, 178–182 (2015). doi: 10.1021/ph500402r |
[24] | Julian MN, Williams C, Borg S et al. Reversible optical tuning of GeSbTe phase-change metasurface spectral filters for mid-wave infrared imaging. Optica 7, 746–754 (2020). doi: 10.1364/OPTICA.392878 |
[25] | Lin ZY, Liu K, Cao T et al. Microsphere femtosecond laser sub-50 nm structuring in far field via non-linear absorption. Opto-Electron Adv 6, 230029 (2023). doi: 10.29026/oea.2023.230029 |
[26] | Kats MA, Blanchard R, Genevet P et al. Nanometre optical coatings based on strong interference effects in highly absorbing media. Nat Mater 12, 20–24 (2013). doi: 10.1038/nmat3443 |
[27] | Andreeva YM, Luong VC, Lutoshina DS et al. Laser coloration of metals in visual art and design. Opt Mater Express 9, 1310–1319 (2019). doi: 10.1364/OME.9.001310 |
[28] | Ríos C, Hosseini P, Taylor RA et al. Color depth modulation and resolution in phase-change material nanodisplays. Adv Mater 28, 4720–4726 (2016). doi: 10.1002/adma.201506238 |
[29] | Yoo S, Gwon T, Eom T et al. Multicolor changeable optical coating by adopting multiple layers of ultrathin phase change material film. ACS Photonics 3, 1265–1270 (2016). doi: 10.1021/acsphotonics.6b00246 |
[30] | Dong WL, Liu HL, Behera JK et al. Wide bandgap phase change material tuned visible photonics. Adv Funct Mater 29, 1806181 (2019). doi: 10.1002/adfm.201806181 |
[31] | Kondrotas R, Chen C, Tang J. Sb2S3 solar cells. Joule 2, 857–878 (2018). doi: 10.1016/j.joule.2018.04.003 |
[32] | Liu HL, Dong WL, Wang H et al. Rewritable color nanoprints in antimony trisulfide films. Sci Adv 6, eabb7171 (2020). doi: 10.1126/sciadv.abb7171 |
[33] | Luo XG, Tsai D, Gu M et al. Extraordinary optical fields in nanostructures: from sub-diffraction-limited optics to sensing and energy conversion. Chem Soc Rev 48, 2458–2494 (2019). doi: 10.1039/C8CS00864G |
[34] | Zhu XL, Engelberg J, Remennik S et al. Resonant laser printing of optical metasurfaces. Nano Lett 22, 2786–2792 (2022). doi: 10.1021/acs.nanolett.1c04874 |
[35] | Chamoli SK, Verma G, Singh SC et al. Phase change material-based nano-cavity as an efficient optical modulator. Nanotechnology 32, 095207 (2021). doi: 10.1088/1361-6528/abcb7a |
[36] | Lu L, Dong WL, Behera JK et al. Inter-diffusion of plasmonic metals and phase change materials. J Mater Sci 54, 2814–2823 (2019). doi: 10.1007/s10853-018-3066-x |
[37] | Lin ZY, Hong MH. Femtosecond laser precision engineering: from micron, submicron, to nanoscale. Ultrafast Sci 2021, 9783514 (2021). doi: 10.34133/2021/9783514 |
[38] | Ahmed N, Darwish S, Alahmari AM. Laser ablation and laser-hybrid ablation processes: a review. Mater Manuf Processes 31, 1121–1142 (2016). doi: 10.1080/10426914.2015.1048359 |
[39] | Liu HG, Lin WX, Hong MH. Surface coloring by laser irradiation of solid substrates. APL Photonics 4, 051101 (2019). doi: 10.1063/1.5089778 |
[40] | Paik T, Hong SH, Gaulding EA et al. Solution-processed phase-change VO2 metamaterials from colloidal vanadium oxide (VOX) nanocrystals. ACS Nano 8, 797–806 (2014). doi: 10.1021/nn4054446 |
[41] | Bayliss P, Nowacki W. Refinement of the crystal structure of stibnite, Sb2S3. Z Kristallogr Cryst Mater 135, 308–315 (1972). doi: 10.1524/zkri.1972.135.16.308 |
[42] | Kelley CK. Thermal Analysis Study of Antimony Sulfides (PN, 1989). |
[43] | Massalski TB. Binary Alloy Phase Diagrams 2nd ed (ASM International, Materials Park, 1990). |
[44] | Mao LB, Li Y, Li GX et al. Reversible switching of electromagnetically induced transparency in phase change metasurfaces. Adv Photonics 2, 056004 (2020). doi: 10.1117/1.AP.2.5.056004 |
[45] | Shportko K, Kremers S, Woda M et al. Resonant bonding in crystalline phase-change materials. Nat Mater 7, 653–658 (2008). doi: 10.1038/nmat2226 |
[46] | Hosseini P, Wright CD, Bhaskaran H. An optoelectronic framework enabled by low-dimensional phase-change films. Nature 511, 206–211 (2014). doi: 10.1038/nature13487 |
[47] | Ji HK, Tong H, Qian H et al. Color printing enabled by phase change materials on paper substrate. AIP Adv 7, 125024 (2017). doi: 10.1063/1.5009945 |
[48] | Ji HK, Tong H, Qian H et al. Non-binary colour modulation for display device based on phase change materials. Sci Rep 6, 39206 (2016). doi: 10.1038/srep39206 |
[49] | Etchegoin PG, Le Ru EC, Meyer M. An analytic model for the optical properties of gold. J Chem Phys 125, 164705 (2006). doi: 10.1063/1.2360270 |
[50] | El Kurdi M, David S, Checoury X et al. Two-dimensional photonic crystals with pure germanium-on-insulator. Opt Commun 281, 846–850 (2008). doi: 10.1016/j.optcom.2007.10.008 |
[51] | Lee KT, Seo S, Lee JY et al. Strong resonance effect in a lossy medium-based optical cavity for angle robust spectrum filters. Adv Mater 26, 6324–6328 (2014). doi: 10.1002/adma.201402117 |
[52] | Efthimiopoulos I, Buchan C, Wang YJ. Structural properties of Sb2S3 under pressure: evidence of an electronic topological transition. Sci Rep 6, 24246 (2016). doi: 10.1038/srep24246 |
[53] | Garcia RGA, Avendaño CAM, Pal M et al. Antimony sulfide (Sb2S3) thin films by pulse electrodeposition: effect of thermal treatment on structural, optical and electrical properties. Mater Sci Semicond Process 44, 91–100 (2016). doi: 10.1016/j.mssp.2015.12.018 |
[54] | Hou GZ, Wang ZY, Ma HG et al. High-temperature stable plasmonic and cavity resonances in metal nanoparticle-decorated silicon nanopillars for strong broadband absorption in photothermal applications. Nanoscale 11, 14777–14784 (2019). doi: 10.1039/C9NR05019A |
[55] | Palik ED. Handbook of Optical Constants of Solids (Elsevier, Amsterdam, 1985). |
[56] | Fan ZB, Shao ZK, Xie MY et al. Silicon nitride metalenses for close-to-one numerical aperture and wide-angle visible imaging. Phys Rev Appl 10, 014005 (2018). doi: 10.1103/PhysRevApplied.10.014005 |
[57] | Liu K, Lian M, Qin KR et al. Active tuning of electromagnetically induced transparency from chalcogenide-only metasurface. Light Adv Manuf 2, 251–261 (2021). doi: 10.37188/lam.2021.019 |
[58] | Ni ZH, Wang HM, Kasim J et al. Graphene thickness determination using reflection and contrast spectroscopy. Nano Lett 7, 2758–2763 (2007). doi: 10.1021/nl071254m |
[59] | Gao K, Du K, Tian SM et al. Intermediate phase-change states with improved cycling durability of Sb2S3 by femtosecond multi-pulse laser irradiation. Adv Funct Mater 31, 2103327 (2021). doi: 10.1002/adfm.202103327 |
[60] | Wang LX, Wan XX, Xiao GS et al. Sequential adaptive estimation for spectral reflectance based on camera responses. Opt Express 28, 25830–25842 (2020). doi: 10.1364/OE.389614 |
[61] | Ma ZC, Zhang YL, Han B et al. Femtosecond-laser direct writing of metallic micro/nanostructures: from fabrication strategies to future applications. Small Methods 2, 1700413 (2018). doi: 10.1002/smtd.201700413 |
[62] | Qin L, Huang YQ, Xia F et al. 5 nm nanogap electrodes and arrays by super-resolution laser lithography. Nano Lett 20, 4916–4923 (2020). doi: 10.1021/acs.nanolett.0c00978 |
[63] | Liu HG, Lin WX, Hong MH. Hybrid laser precision engineering of transparent hard materials: challenges, solutions and applications. Light Sci Appl 10, 162 (2021). doi: 10.1038/s41377-021-00596-5 |
[64] | Lin ZY, Ji LF, Hong MH. Approximately 30 nm nanogroove formation on single crystalline silicon surface under pulsed nanosecond laser irradiation. Nano Lett 22, 70057010 (2022). doi: 10.1021/acs.nanolett.2c01794 |
[65] | Ma ZC, Zhang YL, Han B et al. Femtosecond laser programmed artificial musculoskeletal systems. Nat Commun 11, 4536 (2020). doi: 10.1038/s41467-020-18117-0 |
[66] | Lin ZY, Liu HG, Ji LF et al. Realization of ~10 nm features on semiconductor surfaces via femtosecond laser direct patterning in far field and in ambient air. Nano Lett 20, 4947–4952 (2020). doi: 10.1021/acs.nanolett.0c01013 |
[67] | Wang HT, Hao CL, Lin H et al. Generation of super-resolved optical needle and multifocal array using graphene oxide metalenses. Opto-Electron Adv 4, 200031 (2021). doi: 10.29026/oea.2021.200031 |
Supplementary information for Dynamic interactive bitwise meta-holography with ultra-high computational and display frame rates |
(a) Scheme of a dynamic color display using stepwise FP cavity array based on Sb2S3 switched between amorphous (left column) and crystalline (right column) states. The stepwise FP cavity array consists of air/ Sb2S3/Au with different heights of the Sb2S3 strips. The reflected colors of the structure are associated with the phase and thickness of the Sb2S3. Inset: Schematic of the stepwise FP cavities array. Pixelated Sb2S3 strips of different heights generated by lithography-free fs laser patterning are sandwiched between an air-capping layer and an Au mirror reflector. Resonant modes can be created in the FP cavity, selectively reflecting light with particular colors. (b) Atomic structures: Sb2S3 with the different phases of amorphous and crystalline are shown on enthalpy-order schematic plot. The photo images of the stepwise FP resonators array (c) before crystallizing, (d) after crystallizing the Sb2S3 strips in the cavity. (e) The reversibly switchable photo images of the strip (ii) in figure (c). Scale bar 100 μm.
(a) The measured reflectance spectra (left column) and colors (right column) of the four representative tiles (i–iv) highlighted in Fig. 1(c) during the phase transition of Sb2S3. (b) Color palettes of the structures in amorphous (left column) and crystalline (right column) states as varying the thickness of Sb2S3 from 5 to 30 nm. (c) Raman spectra of the color patch in Fig. 1(c) (ii) for both amorphous and crystalline states, respectively. (d) Color coordinates from the experimentally measured spectra plotted on the CIE 1931 chromaticity figure of the devices as varying the
(a) Scheme of the reversible phase change of the Sb2S3 film with the various heights integrated with an Au reflector: AD-AM Sb2S3 is first annealed above 543 K to change to CR Sb2S3 using a hot plate. The fs laser pulses (35 mW) are triggered to heat the CR Sb2S3 film above 801 K that re-amorphizes the CR Sb2S3. Subsequent quenching results in the MQ-AM Sb2S3. To recrystallise the MQ-AM Sb2S3, for which a temperature above 543 K but below 801 K is required, the fs laser pulses with lower power (25 mW) are employed. (b) Visible–NIR complex refractive index of 50-nm-thick Sb2S3 laminate at the structural states of the AD-AM (red line), CR (blue line), MQ-AM (orange line), and R-CR (green line), where the refractive index is measured using an ellipsometer over a spectral range of 400 to 900 nm.
The simulated (a) reflectance spectra and (b) color palettes of the devices in structural states of amorphous and crystalline for the different thicknesses of Sb2S3 of TSbS = 10, 15, 20, and 30 nm, corresponding to the color tiles (i−iv) shown in Fig. 1(c).
(a) The SEM picture of the fabricated “Bing Dwen Dwen” display (left column) and optical micrographs of the “Bing Dwen Dwen” (middle column) before crystallizing, (right) after crystallizing the Sb2S3 in the device. (b) The SEM picture of the fabricated “DUT” display (left column) and optical micrographs of the “DUT” (middle column) before crystallizing, (right) after crystallizing the Sb2S3 in the device. Scale bar 200 μm.