Zhong F, Hu W, Zhu PN, Wang H, Ma C et al. Piezoresistive design for electronic skin: from fundamental to emerging applications. Opto-Electron Adv 5, 210029 (2022). doi: 10.29026/oea.2022.210029
Citation: Zhong F, Hu W, Zhu PN, Wang H, Ma C et al. Piezoresistive design for electronic skin: from fundamental to emerging applications. Opto-Electron Adv 5, 210029 (2022). doi: 10.29026/oea.2022.210029

Review Open Access

Piezoresistive design for electronic skin: from fundamental to emerging applications

More Information
  • There is growing recognition that the developments in piezoresistive devices from personal healthcare to artificial intelligence, will emerge as de novo translational success in electronic skin. Here, we review the updates with regard to piezoresistive sensors including basic fundamentals, design and fabrication, and device performance. We also discuss the prosperous advances in piezoresistive sensor application, which offer perspectives for future electronic skin.
  • 加载中
  • [1] Ma Z, Li S, Wang HT, Cheng W, Li Y et al. Advanced electronic skin devices for healthcare applications. J Mater Chem B 7, 173–197 (2019). doi: 10.1039/C8TB02862A

    CrossRef Google Scholar

    [2] Dolbashid AS, Mokhtar MS, Muhamad F, Ibrahim F. Potential applications of human artificial skin and electronic skin (e-skin): a review. Bioinspir Biomim Nanobiomater 7, 53–64 (2018). doi: 10.1680/jbibn.17.00002

    CrossRef Google Scholar

    [3] Sokolov AN, Tee BCK, Bettinger CJ, Tok JBH, Bao ZN. Chemical and engineering approaches to enable organic field-effect transistors for electronic skin applications. Acc Chem Res 45, 361–371 (2012). doi: 10.1021/ar2001233

    CrossRef Google Scholar

    [4] Zhang L, Pan J, Zhang Z, Wu H, Yao N et al. Ultrasensitive skin-like wearable optical sensors based on glass micro/nanofibers. Opto-Electron Adv 3, 190022 (2020).

    Google Scholar

    [5] Yang JC, Mun J, Kwon SY, Park S, Bao ZN et al. Electronic skin: recent progress and future prospects for skin-attachable devices for health monitoring, robotics, and prosthetics. Adv Mater 31, 1904765 (2019). doi: 10.1002/adma.201904765

    CrossRef Google Scholar

    [6] Qi K, He JX, Wang HB, Zhou YM, You XL et al. A highly stretchable nanofiber-based electronic skin with pressure-, strain-, and flexion-sensitive properties for health and motion monitoring. ACS Appl Mater Interfaces 9, 42951–42960 (2017). doi: 10.1021/acsami.7b07935

    CrossRef Google Scholar

    [7] dos Santos A, Pinela N, Alves P, Santos R, Fortunato E et al. Piezoresistive e-skin sensors produced with laser engraved molds. Adv Electron Mater 4, 1800182 (2018). doi: 10.1002/aelm.201800182

    CrossRef Google Scholar

    [8] Wang LL, Wang K, Lou Z, Jiang K, Shen GZ. Plant-based modular building blocks for “green” electronic skins. Adv Funct Mater 28, 1804510 (2018). doi: 10.1002/adfm.201804510

    CrossRef Google Scholar

    [9] Liu CY, Huang NG, Xu F, Tong JD, Chen ZW et al. 3D printing technologies for flexible tactile sensors toward wearable electronics and electronic skin. Polymers 10, 629 (2018). doi: 10.3390/polym10060629

    CrossRef Google Scholar

    [10] Hammock ML, Chortos A, Tee BCK, Tok JBH, Bao ZN. 25th anniversary article: the evolution of electronic skin (e-skin): a brief history, design considerations, and recent progress. Adv Mater 25, 5997–6038 (2013). doi: 10.1002/adma.201302240

    CrossRef Google Scholar

    [11] Jiang FK, Tai YC, Walsh K, Tsao T, Lee GB et al. A flexible MEMS technology and its first application to shear stress sensor skin. In IEEE the Tenth Annual International Workshop on Micro Electro Mechanical Systems. An Investigation of Micro Structures, Sensors, Actuators, Machines and Robots 465–470 (IEEE, 1997); http://doi.org/10.1109/MEMSYS.1997.581894.

    Google Scholar

    [12] Wang C, Hwang D, Yu ZB, Takei K, Park J et al. User-interactive electronic skin for instantaneous pressure visualization. Nat Mater 12, 899–904 (2013). doi: 10.1038/nmat3711

    CrossRef Google Scholar

    [13] Tee BCK, Chortos A, Berndt A, Nguyen AK, Tom A et al. A skin-inspired organic digital mechanoreceptor. Science 350, 313–316 (2015). doi: 10.1126/science.aaa9306

    CrossRef Google Scholar

    [14] Someya T, Sekitani T, Iba S, Kato Y, Kawaguchi H et al. A large-area, flexible pressure sensor matrix with organic field-effect transistors for artificial skin applications. Proc Natl Acad Sci USA 101, 9966–9970 (2004). doi: 10.1073/pnas.0401918101

    CrossRef Google Scholar

    [15] Su B, Gong S, Ma Z, Yap LW, Cheng WL. Mimosa-inspired design of a flexible pressure sensor with touch sensitivity. Small 11, 1886–1891 (2015). doi: 10.1002/smll.201403036

    CrossRef Google Scholar

    [16] Kang D, Pikhitsa PV, Choi YW, Lee C, Shin SS et al. Ultrasensitive mechanical crack-based sensor inspired by the spider sensory system. Nature 516, 222–226 (2014). doi: 10.1038/nature14002

    CrossRef Google Scholar

    [17] Zou ZN, Zhu CP, Li Y, Lei XF, Zhang W et al. Rehealable, fully recyclable, and malleable electronic skin enabled by dynamic covalent thermoset nanocomposite. Sci Adv 4, eaaq0508 (2018). doi: 10.1126/sciadv.aaq0508

    CrossRef Google Scholar

    [18] Lou Z, Chen S, Wang LL, Jiang K, Shen GZ. An ultra-sensitive and rapid response speed graphene pressure sensors for electronic skin and health monitoring. Nano Energy 23, 7–14 (2016). doi: 10.1016/j.nanoen.2016.02.053

    CrossRef Google Scholar

    [19] Park J, Kim M, Lee Y, Lee HS, Ko H. Fingertip skin-inspired microstructured ferroelectric skins discriminate static/dynamic pressure and temperature stimuli. Sci Adv 1, e1500661 (2015). doi: 10.1126/sciadv.1500661

    CrossRef Google Scholar

    [20] Wang SH, Xu J, Wang WC, Wang GJN, Rastak R et al. Skin electronics from scalable fabrication of an intrinsically stretchable transistor array. Nature 555, 83–88 (2018). doi: 10.1038/nature25494

    CrossRef Google Scholar

    [21] Someya T, Kato Y, Sekitani T, Iba S, Noguchi Y et al. Conformable, flexible, large-area networks of pressure and thermal sensors with organic transistor active matrixes. Proc Natl Acad Sci USA 102, 12321–12325 (2005). doi: 10.1073/pnas.0502392102

    CrossRef Google Scholar

    [22] Benight SJ, Wang C, Tok JBH, Bao ZN. Stretchable and self-healing polymers and devices for electronic skin. Prog Polym Sci 38, 1961–1977 (2013). doi: 10.1016/j.progpolymsci.2013.08.001

    CrossRef Google Scholar

    [23] Chortos A, Liu J, Bao ZN. Pursuing prosthetic electronic skin. Nat Mater 15, 937–950 (2016). doi: 10.1038/nmat4671

    CrossRef Google Scholar

    [24] Miao P, Wang J, Zhang CC, Sun MY, Cheng SS et al. Graphene nanostructure-based tactile sensors for electronic skin applications. Nano-Micro Lett 11, 71 (2019). doi: 10.1007/s40820-019-0302-0

    CrossRef Google Scholar

    [25] Chortos A, Bao ZN. Skin-inspired electronic devices. Mater Today 17, 321–331 (2014). doi: 10.1016/j.mattod.2014.05.006

    CrossRef Google Scholar

    [26] Chen D, Pei QB. Electronic muscles and skins: a review of soft sensors and actuators. Chem Rev 117, 11239–11268 (2017). doi: 10.1021/acs.chemrev.7b00019

    CrossRef Google Scholar

    [27] Li T, Luo H, Qin L, Wang XW, Xiong ZP et al. Flexible capacitive tactile sensor based on micropatterned dielectric layer. Small 12, 5042–5048 (2016). doi: 10.1002/smll.201600760

    CrossRef Google Scholar

    [28] Lu XZ, Yang JY, Qi L, Bao WM, Zhao L et al. High sensitivity flexible electronic skin based on graphene film. Sensors 19, 794 (2019). doi: 10.3390/s19040794

    CrossRef Google Scholar

    [29] Jason NN, Ho MD, Cheng WL. Resistive electronic skin. J Mater Chem C 5, 5845–5866 (2017). doi: 10.1039/C7TC01169E

    CrossRef Google Scholar

    [30] Kwon SN, Kim SW, Kim IG, Hong YK, Na SI. Direct 3D printing of graphene nanoplatelet/silver nanoparticle-based nanocomposites for multiaxial piezoresistive sensor applications. Adv Mater Technol 4, 1800500 (2019). doi: 10.1007/s00542-013-2029-z

    CrossRef Google Scholar

    [31] Esposito D, Andreozzi E, Fratini A, Gargiulo GD, Savino S et al. A piezoresistive sensor to measure muscle contraction and mechanomyography. Sensors 18, 2553 (2018). doi: 10.3390/s18082553

    CrossRef Google Scholar

    [32] Sengupta D, Pei YT, Kottapalli AGP. Ultralightweight and 3D squeezable graphene-polydimethylsiloxane composite foams as piezoresistive sensors. ACS Appl Mater Interfaces 11, 35201–35211 (2019). doi: 10.1021/acsami.9b11776

    CrossRef Google Scholar

    [33] Li X, Li Y, Li X, Song D, Min P et al. Highly sensitive, reliable and flexible piezoresistive pressure sensors featuring polyurethane sponge coated with MXene sheets. J Colloid Interface Sci 542, 54–62 (2019).

    Google Scholar

    [34] Wu YC, Karakurt I, Beker L, Kubota Y, Xu RX et al. Piezoresistive stretchable strain sensors with human machine interface demonstrations. Sens Actuators A:Phys 279, 46–52 (2018). doi: 10.1016/j.sna.2018.05.036

    CrossRef Google Scholar

    [35] Wu P, Xiao A, Zhao YN, Chen FX, Ke MF et al. An implantable and versatile piezoresistive sensor for the monitoring of human-machine interface interactions and the dynamical process of nerve repair. Nanoscale 11, 21103–21118 (2019). doi: 10.1039/C9NR03925B

    CrossRef Google Scholar

    [36] Azhari S, Termeh Yousefi A, Tanaka H, Khajeh A, Kuredemus N et al. Fabrication of piezoresistive based pressure sensor via purified and functionalized CNTs/PDMS nanocomposite: toward development of haptic sensors. Sens Actuators A:Phys 266, 158–165 (2017). doi: 10.1016/j.sna.2017.09.026

    CrossRef Google Scholar

    [37] Phan HP, Dao DV, Nakamura K, Dimitrijev S, Nguyen NT. The piezoresistive effect of SiC for MEMS sensors at high temperatures: a review. J Microelectromech Syst 24, 1663–1677 (2015). doi: 10.1109/JMEMS.2015.2470132

    CrossRef Google Scholar

    [38] Ferreira A, Silva JP, Rodrigues R, Martin N, Lanceros-Méndez S et al. High performance piezoresistive response of nanostructured ZnO/Ag thin films for pressure sensing applications. Thin Solid Films 691, 137587 (2019). doi: 10.1016/j.tsf.2019.137587

    CrossRef Google Scholar

    [39] Rowe ACH. Piezoresistance in silicon and its nanostructures. J Mater Res 29, 731–744 (2014). doi: 10.1557/jmr.2014.52

    CrossRef Google Scholar

    [40] Smith CS. Piezoresistance effect in germanium and silicon. Phys Rev 94, 42–49 (1954). doi: 10.1103/PhysRev.94.42

    CrossRef Google Scholar

    [41] Barlian AA, Park WT, Mallon JR, Rastegar AJ, Pruitt BL. Review: semiconductor piezoresistance for microsystems. Proc IEEE 97, 513–552 (2009). doi: 10.1109/JPROC.2009.2013612

    CrossRef Google Scholar

    [42] Stassi S, Cauda V, Canavese G, Pirri CF. Flexible tactile sensing based on piezoresistive composites: a review. Sensors 14, 5296–5332 (2014). doi: 10.3390/s140305296

    CrossRef Google Scholar

    [43] Obitayo W, Liu T. A review: carbon nanotube-based piezoresistive strain sensors. J Sens 2012, 652438 (2012).

    Google Scholar

    [44] Quirós-Solano WF, Gaio N, Silvestri C, Pandraud G, Dekker R et al. Metal and polymeric strain gauges for Si-based, monolithically fabricated organs-on-chips. Micromachines 10, 536 (2019). doi: 10.3390/mi10080536

    CrossRef Google Scholar

    [45] Yousef H, Boukallel M, Althoefer K. Tactile sensing for dexterous in-hand manipulation in robotics—a review. Sens Actuators A:Phys 167, 171–187 (2011). doi: 10.1016/j.sna.2011.02.038

    CrossRef Google Scholar

    [46] Peng Y, Liu HZ, Li TQ, Zhang JY. Hybrid metallic foam with superior elasticity, high electrical conductivity, and pressure sensitivity. ACS Appl Mater Interfaces 12, 6489–6495 (2020). doi: 10.1021/acsami.9b20652

    CrossRef Google Scholar

    [47] Fiorillo AS, Critello CD, Pullano SA. Theory, technology and applications of piezoresistive sensors: a review. Sens Actuators A:Phys 281, 156–175 (2018). doi: 10.1016/j.sna.2018.07.006

    CrossRef Google Scholar

    [48] Taherian R. Development of an equation to model electrical conductivity of polymer-based carbon nanocomposites. ECS J Solid State Sci Technol 3, M26–M38 (2014). doi: 10.1149/2.023406jss

    CrossRef Google Scholar

    [49] Wang LH, Cheng LH. Piezoresistive effect of a carbon nanotube silicone-matrix composite. Carbon 71, 319–331 (2014). doi: 10.1016/j.carbon.2014.01.058

    CrossRef Google Scholar

    [50] Shajari S, Mahmoodi M, Rajabian M, Karan K, Sundararaj U et al. Highly sensitive and stretchable carbon nanotube/fluoroelastomer nanocomposite with a double-percolated network for wearable electronics. Adv Electron Mater 6, 1901067 (2020).

    Google Scholar

    [51] Wang XD, Wang JC, Biswas S, Kim H, Nam I. Mechanical, electrical, and piezoresistive sensing characteristics of epoxy-based composites incorporating hybridized networks of carbon nanotubes, graphene, carbon nanofibers, or graphite nanoplatelets. Sensors 20, 2094 (2020).

    Google Scholar

    [52] Ding YC, Yang J, Tolle CR, Zhu ZT. Flexible and compressible PEDOT: PSS@melamine conductive sponge prepared via one-step dip coating as piezoresistive pressure sensor for human motion detection. ACS Appl Mater Interfaces 10, 16077–16086 (2018). doi: 10.1021/acsami.8b00457

    CrossRef Google Scholar

    [53] Li F, Shen T, Wang C, Zhang YP, Qi JJ et al. Recent advances in strain-induced piezoelectric and piezoresistive effect-engineered 2D semiconductors for adaptive electronics and optoelectronics. Nano-Micro Lett 12, 106 (2020). doi: 10.1007/s40820-020-00439-9

    CrossRef Google Scholar

    [54] Kumar SS, Pant BD. Design principles and considerations for the ‘ideal’ silicon piezoresistive pressure sensor: a focused review. Microsyst Technol 20, 1213–1247 (2014). doi: 10.1007/s00542-014-2215-7

    CrossRef Google Scholar

    [55] Wee KW, Kang GY, Park J, Kang JY, Yoon DS et al. Novel electrical detection of label-free disease marker proteins using piezoresistive self-sensing micro-cantilevers. Biosens Bioelectron 20, 1932–1938 (2005). doi: 10.1016/j.bios.2004.09.023

    CrossRef Google Scholar

    [56] Zhang SS, Yen SC, Xiang ZL, Liao LD, Kwong DL et al. Development of silicon probe with acute study on in vivo neural recording and implantation behavior monitored by integrated Si-nanowire strain sensors. J Microelectromech Syst 24, 1303–1313 (2015). doi: 10.1109/JMEMS.2015.2417678

    CrossRef Google Scholar

    [57] Marsi N, Majlis BY, Hamzah AA, Mohd-Yasin F. Development of high temperature resistant of 500 °C employing silicon carbide (3C-SiC) based MEMS pressure sensor. Microsyst Technol 21, 319–330 (2015). doi: 10.1007/s00542-014-2353-y

    CrossRef Google Scholar

    [58] Poncé S, Margine ER, Giustino F. Towards predictive many-body calculations of phonon-limited carrier mobilities in semiconductors. Phys Rev B 97, 121201 (2018).

    Google Scholar

    [59] Won SM, Wang HL, Kim BH, Lee K, Jang H et al. Multimodal sensing with a three-dimensional piezoresistive structure. ACS Nano 13, 10972–10979 (2019). doi: 10.1021/acsnano.9b02030

    CrossRef Google Scholar

    [60] Yang QS, Lee S, Xue YG, Yan Y, Liu TL et al. Materials, mechanics designs, and bioresorbable multisensor platforms for pressure monitoring in the intracranial space. Adv Funct Mater 30, 1910718 (2020).

    Google Scholar

    [61] Okojie RS, Lukco D, Nguyen V, Savrun E. 4H-SiC Piezoresistive pressure sensors at 800 °C with observed sensitivity recovery. IEEE Electron Device Lett 36, 174–176 (2015). doi: 10.1109/LED.2014.2379262

    CrossRef Google Scholar

    [62] Nguyen TK, Phan HP, Dinh T, Dowling KM, Foisal AR et al. Highly sensitive 4H-SiC pressure sensor at cryogenic and elevated temperatures. Mater Des 156, 441–445 (2018). doi: 10.1016/j.matdes.2018.07.014

    CrossRef Google Scholar

    [63] Jayasree A, Kottappally Thankappan S, Ramachandran R, Sundaram MN, Chen CH et al. Bioengineered braided micro-nano (multiscale) fibrous scaffolds for tendon reconstruction. ACS Biomater Sci Eng 5, 1476–1486 (2019). doi: 10.1021/acsbiomaterials.8b01328

    CrossRef Google Scholar

    [64] Park M, Kim MS, Park YK, Ahn JH. Si membrane based tactile sensor with active matrix circuitry for artificial skin applications. Appl Phys Lett 106, 043502 (2015). doi: 10.1063/1.4906373

    CrossRef Google Scholar

    [65] Gao Y, Li Q, Wu RY, Sha J, Lu YF et al. Laser direct writing of ultrahigh sensitive SiC-based strain sensor arrays on elastomer toward electronic skins. Adv Funct Mater 29, 1806786 (2019). doi: 10.1002/adfm.201806786

    CrossRef Google Scholar

    [66] Bi P, Liu XW, Yang Y, Wang ZY, Shi J et al. Silver-nanoparticle-modified polyimide for multiple artificial skin-sensing applications. Adv Mater Technol 4, 1900426 (2019). doi: 10.1002/admt.201900426

    CrossRef Google Scholar

    [67] Dong DD, Ma JZ, Ma ZL, Chen YM, Zhang HM et al. Flexible and lightweight microcellular rGO@pebax composites with synergistic 3D conductive channels and microcracks for piezoresistive sensors. Compos A:Appl Sci Manuf 123, 222–231 (2019). doi: 10.1016/j.compositesa.2019.05.019

    CrossRef Google Scholar

    [68] Ma YN, Yue Y, Zhang H, Cheng F, Zhao WQ et al. 3D synergistical MXene/reduced graphene oxide aerogel for a piezoresistive sensor. ACS Nano 12, 3209–3216 (2018). doi: 10.1021/acsnano.7b06909

    CrossRef Google Scholar

    [69] Oh J, Kim JO, Kim Y, Choi HB, Yang JC et al. Highly uniform and low hysteresis piezoresistive pressure sensors based on chemical grafting of polypyrrole on elastomer template with uniform pore size. Small 15, 1901744 (2019).

    Google Scholar

    [70] Li S, Zhang Y, Wang YL, Xia KL, Yin Z et al. Physical sensors for skin-inspired electronics. InfoMat 2, 184–211 (2020). doi: 10.1002/inf2.12060

    CrossRef Google Scholar

    [71] Zhang CY, Zhou W, Geng D, Bai C, Li WD et al. Laser direct writing and characterizations of flexible piezoresistive sensors with microstructures. Opto-Electron Adv 4, 200061 (2021).

    Google Scholar

    [72] El Zein A, Huppe C, Cochrane C. Development of a flexible strain sensor based on PEDOT: PSS for thin film structures. Sensors 17, 1337 (2017). doi: 10.3390/s17061337

    CrossRef Google Scholar

    [73] Sezen-Edmonds M, Yeh YW, Yao N, Loo YL. Humidity and strain rate determine the extent of phase shift in the piezoresistive response of PEDOT: PSS. ACS Appl Mater Interfaces 11, 16888–16895 (2019). doi: 10.1021/acsami.9b00817

    CrossRef Google Scholar

    [74] Fan X, Wang NX, Yan F, Wang JZ, Song W et al. A transfer-printed, stretchable, and reliable strain sensor using PEDOT: PSS/Ag NW hybrid films embedded into elastomers. Adv Mater Technol 3, 1800030 (2018). doi: 10.1002/admt.201800030

    CrossRef Google Scholar

    [75] Li DD, Lai WY, Zhang YZ, Huang W. Printable transparent conductive films for flexible electronics. Adv Mater 30, 1704738 (2018). doi: 10.1002/adma.201704738

    CrossRef Google Scholar

    [76] Zhang SD, Liu H, Yang SY, Shi XZ, Zhang DB et al. Ultrasensitive and highly compressible piezoresistive sensor based on polyurethane sponge coated with a cracked cellulose nanofibril/silver nanowire layer. ACS Appl Mater Interfaces 11, 10922–10932 (2019). doi: 10.1021/acsami.9b00900

    CrossRef Google Scholar

    [77] Herren B, Saha MC, Liu YT. Carbon nanotube-based piezoresistive sensors fabricated by microwave irradiation. Adv Eng Mater 22, 1901068 (2020). doi: 10.1002/adem.201901068

    CrossRef Google Scholar

    [78] Nguyen NA, Meek KM, Bowland CC, Barnes SH, Naskar AK. An acrylonitrile–butadiene–lignin renewable skin with programmable and switchable electrical conductivity for stress/strain-sensing applications. Macromolecules 51, 115–127 (2018). doi: 10.1021/acs.macromol.7b02336

    CrossRef Google Scholar

    [79] Ruschau GR, Yoshikawa S, Newnham RE. Resistivities of conductive composites. J Appl Phys 72, 953–959 (1992). doi: 10.1063/1.352350

    CrossRef Google Scholar

    [80] Wang S, Chen GR, Niu SY, Chen KF, Gan T et al. Magnetic-assisted transparent and flexible percolative composite for highly sensitive piezoresistive sensor via hot embossing technology. ACS Appl Mater Interfaces 11, 48331–48340 (2019). doi: 10.1021/acsami.9b16215

    CrossRef Google Scholar

    [81] Zhang XH, Sheng NN, Wang LN, Tan YQ, Liu CZ et al. Supramolecular nanofibrillar hydrogels as highly stretchable, elastic and sensitive ionic sensors. Mater Horiz 6, 326–333 (2019). doi: 10.1039/C8MH01188E

    CrossRef Google Scholar

    [82] Luo NQ, Huang Y, Liu J, Chen SC, Wong CP et al. Hollow-structured graphene-silicone-composite-based piezoresistive sensors: decoupled property tuning and bending reliability. Adv Mater 29, 1702675 (2017). doi: 10.1002/adma.201702675

    CrossRef Google Scholar

    [83] Xu MX, Li F, Zhang ZY, Shen T, Qi JJ. Piezoresistive sensors based on rGO 3D microarchitecture: coupled properties tuning in local/integral deformation. Adv Electron Mater 5, 1800461 (2019). doi: 10.1002/aelm.201800461

    CrossRef Google Scholar

    [84] Khalili N, Shen X, Naguib HE. An interlocked flexible piezoresistive sensor with 3D micropyramidal structures for electronic skin applications. Soft Matter 14, 6912–6920 (2018). doi: 10.1039/C8SM00897C

    CrossRef Google Scholar

    [85] Ji B, Zhou Q, Wu J, Gao Y, Wen W et al. Synergistic Optimization toward the Sensitivity and Linearity of Flexible Pressure Sensor via Double Conductive Layer and Porous Microdome Array. ACS Appl Mater Interfaces 12, 31021–31035 (2020). doi: 10.1016/j.apsusc.2018.05.030

    CrossRef Google Scholar

    [86] Ji B, Mao YY, Zhou Q, Zhou JH, Chen G et al. Facile preparation of hybrid structure based on mesodome and micropillar arrays as flexible electronic skin with tunable sensitivity and detection range. ACS Appl Mater Interfaces 11, 28060–28071 (2019). doi: 10.1021/acsami.9b08419

    CrossRef Google Scholar

    [87] Zhang P, Chen YC, Li YX, Zhao Y, Wang W et al. Flexible piezoresistive sensor with the microarray structure based on self-assembly of multi-walled carbon nanotubes. Sensors 19, 4985 (2019). doi: 10.3390/s19224985

    CrossRef Google Scholar

    [88] Pan LJ, Chortos A, Yu GH, Wang YQ, Isaacson S et al. An ultra-sensitive resistive pressure sensor based on hollow-sphere microstructure induced elasticity in conducting polymer film. Nat Commun 5, 3002 (2014). doi: 10.1038/ncomms4002

    CrossRef Google Scholar

    [89] Bae GY, Pak SW, Kim D, Lee G, Kim DH et al. Linearly and highly pressure-sensitive electronic skin based on a bioinspired hierarchical structural array. Adv Mater 28, 5300–5306 (2016). doi: 10.1002/adma.201600408

    CrossRef Google Scholar

    [90] Huang Y, Fan XY, Chen SC, Zhao N. Emerging technologies of flexible pressure sensors: materials, modeling, devices, and manufacturing. Adv Funct Mater 29, 1808509 (2019). doi: 10.1002/adfm.201808509

    CrossRef Google Scholar

    [91] Huang ZL, Gao M, Yan ZC, Pan TS, Khan SA et al. Pyramid microstructure with single walled carbon nanotubes for flexible and transparent micro-pressure sensor with ultra-high sensitivity. Sens Actuators A:Phys 266, 345–351 (2017). doi: 10.1016/j.sna.2017.09.054

    CrossRef Google Scholar

    [92] Gao Y, Lu C, Yu GH, Sha J, Tan JP et al. Laser micro-structured pressure sensor with modulated sensitivity for electronic skins. Nanotechnology 30, 325502 (2019). doi: 10.1088/1361-6528/ab1a86

    CrossRef Google Scholar

    [93] dos Santos A, Pinela N, Alves P, Santos R, Farinha R et al. E-skin bimodal sensors for robotics and prosthesis using PDMS molds engraved by laser. Sensors 19, 899 (2019). doi: 10.3390/s19040899

    CrossRef Google Scholar

    [94] Park J, Kim J, Hong J, Lee H, Lee Y et al. Tailoring force sensitivity and selectivity by microstructure engineering of multidirectional electronic skins. NPG Asia Mater 10, 163–176 (2018). doi: 10.1038/s41427-018-0031-8

    CrossRef Google Scholar

    [95] Wang ZR, Wang S, Zeng JF, Ren XC, Chee AJY et al. High sensitivity, wearable, piezoresistive pressure sensors based on irregular microhump structures and its applications in body motion sensing. Small 12, 3827–3836 (2016). doi: 10.1002/smll.201601419

    CrossRef Google Scholar

    [96] Jia WD, Zhang Q, Cheng YQ, Zhao D, Liu Y et al. Flexible and highly sensitive piezoresistive pressure sensor with sandpaper as a mold. Nano 14, 1950081 (2019). doi: 10.1142/S1793292019500814

    CrossRef Google Scholar

    [97] Wang LL, Chen D, Jiang K, Shen GZ. New insights and perspectives into biological materials for flexible electronics. Chem Soc Rev 46, 6764–6815 (2017). doi: 10.1039/C7CS00278E

    CrossRef Google Scholar

    [98] Shi JD, Wang L, Dai ZH, Zhao LY, Du MD et al. Multiscale hierarchical design of a flexible piezoresistive pressure sensor with high sensitivity and wide linearity range. Small 14, 1800819 (2018). doi: 10.1002/smll.201800819

    CrossRef Google Scholar

    [99] Wei Y, Chen S, Lin Y, Yang ZM, Liu L. Cu–Ag core–shell nanowires for electronic skin with a petal molded microstructure. J Mater Chem C 3, 9594–9602 (2015). doi: 10.1039/C5TC01723H

    CrossRef Google Scholar

    [100] Jian MQ, Xia KL, Wang Q, Yin Z, Wang HM et al. Flexible and highly sensitive pressure sensors based on bionic hierarchical structures. Adv Funct Mater 27, 1606066 (2017). doi: 10.1002/adfm.201606066

    CrossRef Google Scholar

    [101] Jang HH, Park JS, Choi B. Flexible piezoresistive pulse sensor using biomimetic PDMS mold replicated negatively from shark skin and PEDOT: PSS thin film. Sens Actuators A:Phys 286, 107–114 (2019). doi: 10.1016/j.sna.2018.12.015

    CrossRef Google Scholar

    [102] Chen ZM, Liu XH, Wang SM, Zhang XX, Luo HS. A bioinspired multilayer assembled microcrack architecture nanocomposite for highly sensitive strain sensing. Compos Sci Technol 164, 51–58 (2018). doi: 10.1016/j.compscitech.2018.05.029

    CrossRef Google Scholar

    [103] Nie P, Wang RR, Xu XJ, Cheng Y, Wang X et al. High-performance piezoresistive electronic skin with bionic hierarchical microstructure and microcracks. ACS Appl Mater Interfaces 9, 14911–14919 (2017). doi: 10.1021/acsami.7b01979

    CrossRef Google Scholar

    [104] Yang TT, Li XM, Jiang X, Lin SY, Lao JC et al. Structural engineering of gold thin films with channel cracks for ultrasensitive strain sensing. Mater Horiz 3, 248–255 (2016). doi: 10.1039/C6MH00027D

    CrossRef Google Scholar

    [105] Shi JD, Lv SY, Wang L, Dai ZH, Yang ST et al. Crack control in biotemplated gold films for wide-range, highly sensitive strain sensing. Adv Mater Interfaces 6, 1901223 (2019). doi: 10.1002/admi.201901223

    CrossRef Google Scholar

    [106] Zhao TT, Li TK, Chen LL, Yuan L, Li XF et al. Highly sensitive flexible piezoresistive pressure sensor developed using biomimetically textured porous materials. ACS Appl Mater Interfaces 11, 29466–29473 (2019). doi: 10.1021/acsami.9b09265

    CrossRef Google Scholar

    [107] Chen M, Li K, Cheng GM, He K, Li WW et al. Touchpoint-tailored ultrasensitive piezoresistive pressure sensors with a broad dynamic response range and low detection limit. ACS Appl Mater Interfaces 11, 2551–2558 (2019). doi: 10.1021/acsami.8b20284

    CrossRef Google Scholar

    [108] Sun XG, Sun JH, Zheng SK, Wang CK, Tan WS et al. A sensitive piezoresistive tactile sensor combining two microstructures. Nanomaterials 9, 779 (2019). doi: 10.3390/nano9050779

    CrossRef Google Scholar

    [109] Wei Y, Chen S, Yuan X, Wang PP, Liu L. Multiscale wrinkled microstructures for piezoresistive fibers. Adv Funct Mater 26, 5078–5085 (2016). doi: 10.1002/adfm.201600580

    CrossRef Google Scholar

    [110] Wang SC, Innocent MT, Wang QQ, Xiang HX, Tang JG et al. Kraft lignin-based piezoresistive sensors: effect of chemical structure on the microstructure of ultrathin carbon fibers. Int J Biol Macromol 151, 730–739 (2020). doi: 10.1016/j.ijbiomac.2020.02.225

    CrossRef Google Scholar

    [111] Li J, Fang LC, Sun BH, Li XX, Kang SH. Review-recent progress in flexible and stretchable piezoresistive sensors and their applications. J Electrochem Soc 167, 037561 (2020). doi: 10.1149/1945-7111/ab6828

    CrossRef Google Scholar

    [112] Cao MH, Wang MQ, Li L, Qiu HW, Padhiar MA et al. Wearable rGO-Ag NW@cotton fiber piezoresistive sensor based on the fast charge transport channel provided by Ag nanowire. Nano Energy 50, 528–535 (2018). doi: 10.1016/j.nanoen.2018.05.038

    CrossRef Google Scholar

    [113] Lin XZ, Zhang T, Cao JH, Wen H, Fei T et al. Flexible piezoresistive sensors based on conducting polymer-coated fabric applied to human physiological signals monitoring. J Bionic Eng 17, 55–63 (2020). doi: 10.1007/s42235-020-0004-9

    CrossRef Google Scholar

    [114] Zhang L, Li HQ, Lai XJ, Gao TY, Liao XF et al. Carbonized cotton fabric-based multilayer piezoresistive pressure sensors. Cellulose 26, 5001–5014 (2019). doi: 10.1007/s10570-019-02432-x

    CrossRef Google Scholar

    [115] Wang Q, Jian MQ, Wang CY, Zhang YY. Carbonized silk nanofiber membrane for transparent and sensitive electronic skin. Adv Funct Mater 27, 1605657 (2017). doi: 10.1002/adfm.201605657

    CrossRef Google Scholar

    [116] Zhao ZC, Li BT, Xu LQ, Qiao Y, Wang F et al. A sandwich-structured piezoresistive sensor with electrospun nanofiber mats as supporting, sensing, and packaging layers. Polymers 10, 575 (2018). doi: 10.3390/polym10060575

    CrossRef Google Scholar

    [117] Liu WJ, Liu NS, Yue Y, Rao JY, Cheng F et al. Piezoresistive pressure sensor based on synergistical innerconnect polyvinyl alcohol nanowires/wrinkled graphene film. Small 14, 1704149 (2018). doi: 10.1002/smll.201704149

    CrossRef Google Scholar

    [118] Luo C, Liu NS, Zhang H, Liu WJ, Yue Y et al. A new approach for ultrahigh-performance piezoresistive sensor based on wrinkled PPy film with electrospun PVA nanowires as spacer. Nano Energy 41, 527–534 (2017). doi: 10.1016/j.nanoen.2017.10.007

    CrossRef Google Scholar

    [119] Li P, Zhao LB, Jiang ZD, Yu MZ, Li Z et al. Self-powered flexible sensor based on the graphene modified P(VDF-TrFE) electrospun fibers for pressure detection. Macromol Mater Eng 304, 1900504 (2019). doi: 10.1002/mame.201900504

    CrossRef Google Scholar

    [120] Alam M, Lee S, Kim M, Han KS, Cao VA et al. Ultra-flexible nanofiber-based multifunctional motion sensor. Nano Energy 72, 104672 (2020). doi: 10.1016/j.nanoen.2020.104672

    CrossRef Google Scholar

    [121] Yu SL, Wang XP, Xiang HX, Zhu LP, Tebyetekerwa M et al. Superior piezoresistive strain sensing behaviors of carbon nanotubes in one-dimensional polymer fiber structure. Carbon 140, 1–9 (2018). doi: 10.1016/j.carbon.2018.08.028

    CrossRef Google Scholar

    [122] Tang ZH, Jia SH, Wang F, Bian CS, Chen YY et al. Highly stretchable core-sheath fibers via wet-spinning for wearable strain sensors. ACS Appl Mater Interfaces 10, 6624–6635 (2018). doi: 10.1021/acsami.7b18677

    CrossRef Google Scholar

    [123] Tang ZH, Jia SH, Shi S, Wang F, Li B. Coaxial carbon nanotube/polymer fibers as wearable piezoresistive sensors. Sens Actuators A:Phys 284, 85–95 (2018). doi: 10.1016/j.sna.2018.10.012

    CrossRef Google Scholar

    [124] Charara M, Luo WY, Saha MC, Liu YT. Investigation of lightweight and flexible carbon nanofiber/poly dimethylsiloxane nanocomposite sponge for piezoresistive sensor application. Adv Eng Mater 21, 1801068 (2019). doi: 10.1002/adem.201801068

    CrossRef Google Scholar

    [125] Zhong Y, Tan XH, Shi TL, Huang YY, Cheng SY et al. Tunable wrinkled graphene foams for highly reliable piezoresistive sensor. Sens Actuators A:Phys 281, 141–149 (2018). doi: 10.1016/j.sna.2018.09.002

    CrossRef Google Scholar

    [126] Zhai Y, Yu YF, Zhou KK, Yun ZG, Huang WJ et al. Flexible and wearable carbon black/thermoplastic polyurethane foam with a pinnate-veined aligned porous structure for multifunctional piezoresistive sensors. Chem Eng J 382, 122985 (2020). doi: 10.1016/j.cej.2019.122985

    CrossRef Google Scholar

    [127] Zhuo H, Hu YJ, Chen ZH, Peng XW, Liu LX et al. A carbon aerogel with super mechanical and sensing performances for wearable piezoresistive sensors. J Mater Chem A 7, 8092–8100 (2019). doi: 10.1039/C9TA00596J

    CrossRef Google Scholar

    [128] Peng XW, Wu KZ, Hu YJ, Zhuo H, Chen ZH et al. A mechanically strong and sensitive CNT/rGO–CNF carbon aerogel for piezoresistive sensors. J Mater Chem A 6, 23550–23559 (2018). doi: 10.1039/C8TA09322A

    CrossRef Google Scholar

    [129] Yang CX, Liu WJ, Liu NS, Su J, Li LY et al. Graphene aerogel broken to fragments for a piezoresistive pressure sensor with a higher sensitivity. ACS Appl Mater Interfaces 11, 33165–33172 (2019). doi: 10.1021/acsami.9b12055

    CrossRef Google Scholar

    [130] Ma ZL, Wei AJ, Ma JZ, Shao L, Jiang HE et al. Lightweight, compressible and electrically conductive polyurethane sponges coated with synergistic multiwalled carbon nanotubes and graphene for piezoresistive sensors. Nanoscale 10, 7116–7126 (2018). doi: 10.1039/C8NR00004B

    CrossRef Google Scholar

    [131] Pang Y, Tian H, Tao LQ, Li YX, Wang XF et al. Flexible, highly sensitive, and wearable pressure and strain sensors with graphene porous network structure. ACS Appl Mater Interfaces 8, 26458–26462 (2016). doi: 10.1021/acsami.6b08172

    CrossRef Google Scholar

    [132] Zheng SD, Wu XT, Huang YH, Xu ZW, Yang W et al. Highly sensitive and multifunctional piezoresistive sensor based on polyaniline foam for wearable human-activity monitoring. Compos A:Appl Sci Manuf 121, 510–516 (2019). doi: 10.1016/j.compositesa.2019.04.014

    CrossRef Google Scholar

    [133] Zhai W, Xia QJ, Zhou KK, Yue XY, Ren MN et al. Multifunctional flexible carbon black/polydimethylsiloxane piezoresistive sensor with ultrahigh linear range, excellent durability and oil/water separation capability. Chem Eng J 372, 373–382 (2019). doi: 10.1016/j.cej.2019.04.142

    CrossRef Google Scholar

    [134] Wu YH, Liu HZ, Chen S, Dong XC, Wang PP et al. Channel crack-designed gold@PU sponge for highly elastic piezoresistive sensor with excellent detectability. ACS Appl Mater Interfaces 9, 20098–20105 (2017). doi: 10.1021/acsami.7b04605

    CrossRef Google Scholar

    [135] Wang T, Li JH, Zhang Y, Liu F, Zhang B et al. Highly ordered 3D porous graphene sponge for wearable piezoresistive pressure sensor applications. Chem Eur J 25, 6378–6384 (2019). doi: 10.1002/chem.201900014

    CrossRef Google Scholar

    [136] Huang WJ, Dai K, Zhai Y, Liu H, Zhan PF et al. Flexible and lightweight pressure sensor based on carbon nanotube/thermoplastic polyurethane-aligned conductive foam with superior compressibility and stability. ACS Appl Mater Interfaces 9, 42266–42277 (2017). doi: 10.1021/acsami.7b16975

    CrossRef Google Scholar

    [137] Abshirini M, Charara M, Liu YT, Saha M, Altan MC. 3D printing of highly stretchable strain sensors based on carbon nanotube nanocomposites. Adv Eng Mater 20, 1800425 (2018). doi: 10.1002/adem.201800425

    CrossRef Google Scholar

    [138] Crump MR, Gong AT, Chai D, Bidinger SL, Pavinatto FJ et al. Monolithic 3D printing of embeddable and highly stretchable strain sensors using conductive ionogels. Nanotechnology 30, 364002 (2019). doi: 10.1088/1361-6528/ab2440

    CrossRef Google Scholar

    [139] Kelleher SM, Habimana O, Lawler J, Reilly BO, Daniels S et al. Cicada wing surface topography: an investigation into the bactericidal properties of nanostructural features. ACS Appl Mater Interfaces 8, 14966–14974 (2016). doi: 10.1021/acsami.5b08309

    CrossRef Google Scholar

    [140] Guo SZ, Qiu KY, Meng FB, Park SH, McAlpine MC. 3D printed stretchable tactile sensors. Adv Mater 29, 1701218 (2017). doi: 10.1002/adma.201701218

    CrossRef Google Scholar

    [141] Goh GL, Agarwala S, Yeong WY. Directed and on-demand alignment of carbon nanotube: a review toward 3D printing of electronics. Adv Mater Interfaces 6, 1801318 (2019). doi: 10.1002/admi.201801318

    CrossRef Google Scholar

    [142] Nadgorny M, Ameli A. Functional polymers and nanocomposites for 3D printing of smart structures and devices. ACS Appl Mater Interfaces 10, 17489–17507 (2018). doi: 10.1021/acsami.8b01786

    CrossRef Google Scholar

    [143] Davoodi E, Fayazfar H, Liravi F, Jabari E, Toyserkani E. Drop-on-demand high-speed 3D printing of flexible milled carbon fiber/silicone composite sensors for wearable biomonitoring devices. Addit Manuf 32, 101016 (2020). doi: 10.1016/j.addma.2019.101016

    CrossRef Google Scholar

    [144] Wang HH, Yang HM, Zhang S, Zhang L, Li JS et al. 3D-printed flexible tactile sensor mimicking the texture and sensitivity of human skin. Adv Mater Technol 4, 1900147 (2019). doi: 10.1002/admt.201900147

    CrossRef Google Scholar

    [145] Tang ZH, Jia SH, Zhou CH, Li B. 3D printing of highly sensitive and large-measurement-range flexible pressure sensors with a positive piezoresistive effect. ACS Appl Mater Interfaces 12, 28669–28680 (2020). doi: 10.1021/acsami.0c06977

    CrossRef Google Scholar

    [146] Wei PQ, Yang X, Cao ZM, Guo XL, Jiang HL et al. Flexible and stretchable electronic skin with high durability and shock resistance via embedded 3D printing technology for human activity monitoring and personal healthcare. Adv Mater Technol 4, 1900315 (2019). doi: 10.1002/admt.201900315

    CrossRef Google Scholar

    [147] Wang ZY, Guan X, Huang HY, Wang HF, Lin WE et al. Full 3D printing of stretchable piezoresistive sensor with hierarchical porosity and multimodulus architecture. Adv Funct Mater 29, 1807569 (2019). doi: 10.1002/adfm.201807569

    CrossRef Google Scholar

    [148] Kim JY, Ji S, Jung S, Ryu BH, Kim HS et al. 3D printable composite dough for stretchable, ultrasensitive and body-patchable strain sensors. Nanoscale 9, 11035–11046 (2017). doi: 10.1039/C7NR01865G

    CrossRef Google Scholar

    [149] Huang K, Dong SM, Yang JS, Yan JY, Xue YD et al. Three-dimensional printing of a tunable graphene-based elastomer for strain sensors with ultrahigh sensitivity. Carbon 143, 63–72 (2019). doi: 10.1016/j.carbon.2018.11.008

    CrossRef Google Scholar

    [150] Zhou YL, Wu YZ, Asghar W, Ding J, Su XR et al. Asymmetric structure based flexible strain sensor for simultaneous detection of various human joint motions. ACS Appl Electron Mater 1, 1866–1872 (2019). doi: 10.1021/acsaelm.9b00386

    CrossRef Google Scholar

    [151] Han T, Kundu S, Nag A, Xu YZ. 3D printed sensors for biomedical applications: a review. Sensors 19, 1706 (2019). doi: 10.3390/s19071706

    CrossRef Google Scholar

    [152] Gong TX, Zhang H, Huang W, Mao LN, Ke YZ et al. Highly responsive flexible strain sensor using polystyrene nanoparticle doped reduced graphene oxide for human health monitoring. Carbon 140, 286–295 (2018). doi: 10.1016/j.carbon.2018.09.007

    CrossRef Google Scholar

    [153] Guan X, Wang ZY, Zhao WY, Huang HY, Wang SP et al. Flexible piezoresistive sensors with wide-range pressure measurements based on a graded nest-like architecture. ACS Appl Mater Interfaces 12, 26137–26144 (2020). doi: 10.1021/acsami.0c03326

    CrossRef Google Scholar

    [154] Ramírez J, Rodriquez D, Urbina AD, Cardenas AM, Lipomi DJ. Combining high sensitivity and dynamic range: wearable thin-film composite strain sensors of graphene, ultrathin palladium, and PEDOT: PSS. ACS Appl Nano Mater 2, 2222–2229 (2019). doi: 10.1021/acsanm.9b00174

    CrossRef Google Scholar

    [155] Tewari A, Gandla S, Bohm S, McNeill CR, Gupta D. Rapid dip-dry MWNT-rGO ink wrapped polyester elastic band (PEB) for piezoresistive strain sensor applications. Appl Phys Lett 113, 084101 (2018). doi: 10.1063/1.5037318

    CrossRef Google Scholar

    [156] Ruth SRA, Beker L, Tran H, Feig VR, Matsuhisa N et al. Rational design of capacitive pressure sensors based on pyramidal microstructures for specialized monitoring of biosignals. Adv Funct Mater 30, 1903100 (2020). doi: 10.1002/adfm.201903100

    CrossRef Google Scholar

    [157] Wang YP, Niu WB, Lo CY, Zhao YS, He XM et al. Interactively full-color changeable electronic fiber sensor with high stretchability and rapid response. Adv Funct Mater 30, 2000356 (2020). doi: 10.1002/adfm.202000356

    CrossRef Google Scholar

    [158] Chen XP, Luo F, Yuan M, Xie DL, Shen L et al. A dual-functional graphene-based self-alarm health-monitoring e-skin. Adv Funct Mater 29, 1904706 (2019). doi: 10.1002/adfm.201904706

    CrossRef Google Scholar

    [159] Wu Q, Qiao YC, Guo R, Naveed S, Hirtz T et al. Triode-mimicking graphene pressure sensor with positive resistance variation for physiology and motion monitoring. ACS Nano 14, 10104–10114 (2020). doi: 10.1021/acsnano.0c03294

    CrossRef Google Scholar

    [160] Ma YN, Liu NS, Li LY, Hu XK, Zou ZG et al. A highly flexible and sensitive piezoresistive sensor based on MXene with greatly changed interlayer distances. Nat Commun 8, 1207 (2017). doi: 10.1038/s41467-017-01136-9

    CrossRef Google Scholar

    [161] Zhang L, Li HQ, Lai XJ, Gao TY, Yang J et al. Thiolated graphene@polyester fabric-based multilayer piezoresistive pressure sensors for detecting human motion. ACS Appl Mater Interfaces 10, 41784–41792 (2018). doi: 10.1021/acsami.8b16027

    CrossRef Google Scholar

    [162] Zhang Y, Chang TH, Jing L, Li KR, Yang HT et al. Heterogeneous, 3D architecturing of 2D titanium carbide (MXene) for microdroplet manipulation and voice recognition. ACS Appl Mater Interfaces 12, 8392–8402 (2020). doi: 10.1021/acsami.9b18879

    CrossRef Google Scholar

    [163] Yu R, Xia TC, Wu B, Yuan J, Ma LJ et al. Highly sensitive flexible piezoresistive sensor with 3D conductive network. ACS Appl Mater Interfaces 12, 35291–35299 (2020). doi: 10.1021/acsami.0c09552

    CrossRef Google Scholar

    [164] Deng CH, Gao PX, Lan LF, He PH, Zhao X et al. Ultrasensitive and highly stretchable multifunctional strain sensors with timbre-recognition ability based on vertical graphene. Adv Funct Mater 29, 1907151 (2019). doi: 10.1002/adfm.201907151

    CrossRef Google Scholar

    [165] Dinh Le TS, An JN, Huang Y, Vo Q, Boonruangkan J et al. Ultrasensitive anti-interference voice recognition by bio-inspired skin-attachable self-cleaning acoustic sensors. ACS Nano 13, 13293–13303 (2019). doi: 10.1021/acsnano.9b06354

    CrossRef Google Scholar

    [166] Gao YY, Yan C, Huang HC, Yang T, Tian G et al. Microchannel-confined MXene based flexible piezoresistive multifunctional micro-force sensor. Adv Funct Mater 30, 1909603 (2020). doi: 10.1002/adfm.201909603

    CrossRef Google Scholar

    [167] Ming Y, Yang Y, Fu RP, Lu C, Zhao L et al. IPMC sensor integrated smart glove for pulse diagnosis, braille recognition, and human–computer interaction. Adv Mater Technol 3, 1800257 (2018). doi: 10.1002/admt.201800257

    CrossRef Google Scholar

    [168] Dong WT, Yang L, Fortino G. Stretchable human machine interface based on smart glove embedded with PDMS-CB strain sensors. IEEE Sens J 20, 8073–8081 (2020). doi: 10.1109/JSEN.2020.2982070

    CrossRef Google Scholar

    [169] Liu SB, Wu X, Zhang DD, Guo CW, Wang P et al. Ultrafast dynamic pressure sensors based on graphene hybrid structure. ACS Appl Mater Interfaces 9, 24148–24154 (2017). doi: 10.1021/acsami.7b07311

    CrossRef Google Scholar

    [170] Sencadas V, Tawk C, Alici G. Highly sensitive soft foam sensors to empower robotic systems. Adv Mater Technol 4, 1900423 (2019). doi: 10.1002/admt.201900423

    CrossRef Google Scholar

    [171] Zhong WB, Jiang HQ, Jia KY, Ding XC, Yadav A et al. Breathable and large curved area perceptible flexible piezoresistive sensors fabricated with conductive nanofiber assemblies. ACS Appl Mater Interfaces 12, 37764–37773 (2020). doi: 10.1021/acsami.0c10516

    CrossRef Google Scholar

    [172] Liang JL, Wu JH, Huang HL, Xu WF, Li B et al. Soft sensitive skin for safety control of a nursing robot using proximity and tactile sensors. IEEE Sens J 20, 3822–3830 (2020). doi: 10.1109/JSEN.2019.2959311

    CrossRef Google Scholar

    [173] Chang TH, Tian Y, Li CS, Gu XY, Li KR et al. Stretchable graphene pressure sensors with Shar-Pei-like hierarchical wrinkles for collision-aware surgical robotics. ACS Appl Mater Interfaces 11, 10226–10236 (2019). doi: 10.1021/acsami.9b00166

    CrossRef Google Scholar

    [174] Ferreira A, Correia V, Mendes E, Lopes C, Vaz JFV et al. Piezoresistive polymer-based materials for real-time assessment of the stump/socket interface pressure in lower limb amputees. IEEE Sens J 17, 2182–2190 (2017). doi: 10.1109/JSEN.2017.2667717

    CrossRef Google Scholar

    [175] Kim Y, Chortos A, Xu WT, Liu YX, Oh JY et al. A bioinspired flexible organic artificial afferent nerve. Science 360, 998–1003 (2018). doi: 10.1126/science.aao0098

    CrossRef Google Scholar

    [176] Wang Y, Wu HT, Xu L, Zhang HN, Yang Y et al. Hierarchically patterned self-powered sensors for multifunctional tactile sensing. Sci Adv 6, eabb9083 (2020). doi: 10.1126/sciadv.abb9083

    CrossRef Google Scholar

    [177] Lee K, Ni XY, Lee JY, Arafa H, Pe DJ et al. Mechano-acoustic sensing of physiological processes and body motions via a soft wireless device placed at the suprasternal notch. Nat Biomed Eng 4, 148–158 (2020).

    Google Scholar

    [178] Yang HT, Xiao X, Li ZP, Li KR, Cheng N et al. Wireless Ti3C2Tx MXene strain sensor with ultrahigh sensitivity and designated working windows for soft exoskeletons. ACS Nano 14, 11860–11875 (2020). doi: 10.1021/acsnano.0c04730

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(13)

Tables(1)

Article Metrics

Article views(16025) PDF downloads(1415) Cited by(0)

Access History
Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint