You EM, Chen YQ, Yi J, Meng ZD, Chen Q et al. Nanobridged rhombic antennas supporting both dipolar and high-order plasmonic modes with spatially superimposed hotspots in the mid-infrared. Opto-Electron Adv 4, 210076 (2021). doi: 10.29026/oea.2021.210076
Citation: You EM, Chen YQ, Yi J, Meng ZD, Chen Q et al. Nanobridged rhombic antennas supporting both dipolar and high-order plasmonic modes with spatially superimposed hotspots in the mid-infrared. Opto-Electron Adv 4, 210076 (2021). doi: 10.29026/oea.2021.210076

Original Article Open Access

Nanobridged rhombic antennas supporting both dipolar and high-order plasmonic modes with spatially superimposed hotspots in the mid-infrared

More Information
  • Mid-infrared antennas (MIRAs) support highly-efficient optical resonance in the infrared, enabling multiple applications, such as surface-enhanced infrared absorption (SEIRA) spectroscopy and ultrasensitive mid-infrared detection. However, most MIRAs such as dipolar-antenna structures support only narrow-band dipolar-mode resonances while high-order modes are usually too weak to be observed, severely limiting other useful applications that broadband resonances make possible. In this study, we report a multiscale nanobridged rhombic antenna (NBRA) that supports two dominant resonances in the MIR, including a charge-transfer plasmon (CTP) band and a bridged dipolar plasmon (BDP) band which looks like a quadruple resonance. These assignments are evidenced by scattering-type scanning near-field optical microscopy (s-SNOM) imaging and electromagnetic simulations. The high-order mode only occurs with nanometer-sized bridge (nanobridge) linked to the one end of the rhombic arm which mainly acts as the inductance and the resistance by the circuit analysis. Moreover, the main hotspots associated with the two resonant bands are spatially superimposed, enabling boosting up the local field for both bands by multiscale coupling. With large field enhancements, multiband detection with high sensitivity to a monolayer of molecules is achieved when using SEIRA. Our work provides a new strategy possible to activate high-order modes for designing multiband MIRAs with both nanobridges and nanogaps for such MIR applications as multiband SEIRAs, IR detectors, and beam-shaping of quantum cascade lasers in the future.
  • 加载中
  • [1] Aroca RF, Ross DJ, Domingo C. Surface-enhanced infrared spectroscopy. Appl Spectrosc 58, 324A–338A (2004). doi: 10.1366/0003702042475420

    CrossRef Google Scholar

    [2] Lal S, Grady NK, Kundu J, Levin CS, Lassiter JB et al. Tailoring plasmonic substrates for surface enhanced spectroscopies. Chem Soc Rev 37, 898–911 (2008). doi: 10.1039/b705969h

    CrossRef Google Scholar

    [3] Neubrech F, Klevenz M, Meng F, Pucci A. Nanoantennas for surface enhanced infrared spectroscopy. In Cat DT, Pucci A, Wandelt K, eds. Physics and Engineering of New Materials 321–325 (Springer, 2009);https://doi.org/10.1007/978-3-540-88201-5_37.

    Google Scholar

    [4] Neubrech F, Huck C, Weber K, Pucci A, Giessen H. Surface-enhanced infrared spectroscopy using resonant nanoantennas. Chem Rev 117, 5110–5145 (2017). doi: 10.1021/acs.chemrev.6b00743

    CrossRef Google Scholar

    [5] Yang XX, Sun ZP, Low T, Hu H, Guo XD et al. Nanomaterial-based plasmon-enhanced infrared spectroscopy. Adv Mater 30, 1704896 (2018). doi: 10.1002/adma.201704896

    CrossRef Google Scholar

    [6] Tittl A, John-Herpin A, Leitis A, Arvelo ER, Altug H. Metasurface-based molecular biosensing aided by artificial intelligence. Angew Chem Int Ed 58, 14810–14822 (2019). doi: 10.1002/anie.201901443

    CrossRef Google Scholar

    [7] Taliercio T, Biagioni P. Semiconductor infrared plasmonics. Nanophotonics 8, 949–990 (2019). doi: 10.1515/nanoph-2019-0077

    CrossRef Google Scholar

    [8] Caldwell JD, Lindsay L, Giannini V, Vurgaftman I, Reinecke TL et al. Low-loss, infrared and terahertz nanophotonics using surface phonon polaritons. Nanophotonics 4, 44–68 (2015). doi: 10.1515/nanoph-2014-0003

    CrossRef Google Scholar

    [9] Wang T, Li PN, Chigrin DN, Giles AJ, Bezares FJ et al. Phonon-polaritonic bowtie nanoantennas: controlling infrared thermal radiation at the nanoscale. ACS Photonics 4, 1753–1760 (2017). doi: 10.1021/acsphotonics.7b00321

    CrossRef Google Scholar

    [10] Alfaro-Mozaz FJ, Alonso-González P, Vélez S, Dolado I, Autore M et al. Nanoimaging of resonating hyperbolic polaritons in linear boron nitride antennas. Nat Commun 8, 15624 (2017). doi: 10.1038/ncomms15624

    CrossRef Google Scholar

    [11] Autore M, Li PN, Dolado I, Alfaro-Mozaz FJ, Esteban R et al. Boron nitride nanoresonators for phonon-enhanced molecular vibrational spectroscopy at the strong coupling limit. Light Sci Appl 7, 17172 (2018). doi: 10.1038/lsa.2017.172

    CrossRef Google Scholar

    [12] Ohtsu M. History, current developments, and future directions of near-field optical science. Opto-Electron Adv 3, 190046 (2020).

    Google Scholar

    [13] Novotny L, van Hulst N. Antennas for light. Nat Photonics 5, 83–90 (2011). doi: 10.1038/nphoton.2010.237

    CrossRef Google Scholar

    [14] Dong LL, Yang X, Zhang C, Cerjan B, Zhou LN et al. Nanogapped Au antennas for ultrasensitive surface-enhanced infrared absorption spectroscopy. Nano Lett 17, 5768–5774 (2017). doi: 10.1021/acs.nanolett.7b02736

    CrossRef Google Scholar

    [15] Chen C, Oh SH, Li M. Coupled-mode theory for plasmonic resonators integrated with silicon waveguides towards mid-infrared spectroscopic sensing. Opt Express 28, 2020–2036 (2020). doi: 10.1364/OE.28.002020

    CrossRef Google Scholar

    [16] Chen H, Zhang SY, Miller KA, Braun PV. Autonomic molecular transport for ultrasensitive surface-enhanced infrared absorption spectroscopy. ACS Appl Polym Mater 2, 3929–3935 (2020). doi: 10.1021/acsapm.0c00607

    CrossRef Google Scholar

    [17] Zhang L, Pan J, Zhang Z, Wu H, Yao N et al. Ultrasensitive skin-like wearable optical sensors based on glass micro/nanofibers. Opto-Electron Adv 3, 190022 (2020).

    Google Scholar

    [18] Chen Q, Liang L, Zheng Q L, Zhang Y X, Wen L. On-chip readout plasmonic mid-IR gas sensor. Opto-Electron Adv 3, 190040 (2020).

    Google Scholar

    [19] Yu N, Wang Q, Capasso F. Beam engineering of quantum cascade lasers. Laser Photonics Rev 6, 24–46 (2012). doi: 10.1002/lpor.201100019

    CrossRef Google Scholar

    [20] Tong J C, Suo F, Ma J H Z, Tobing L Y M, Qian L et al. Surface plasmon enhanced infrared photodetection. Opto-Electron Adv 2, 180026 (2019).

    Google Scholar

    [21] Yao Y, Shankar R, Rauter P, Song Y, Kong J et al. High-responsivity mid-infrared graphene detectors with antenna-enhanced photocarrier generation and collection. Nano Lett 14, 3749–3754 (2014). doi: 10.1021/nl500602n

    CrossRef Google Scholar

    [22] Wang HL, You EM, Panneerselvam R, Ding SY, Tian ZQ. Advances of surface-enhanced Raman and IR spectroscopies: from nano/microstructures to macro-optical design. Light Sci Appl 10, 161 (2021). doi: 10.1038/s41377-021-00599-2

    CrossRef Google Scholar

    [23] Novotny L. Effective wavelength scaling for optical antennas. Phys Rev Lett 98, 266802 (2007). doi: 10.1103/PhysRevLett.98.266802

    CrossRef Google Scholar

    [24] Neubrech F, Pucci A, Cornelius TW, Karim S, García-Etxarri A et al. Resonant plasmonic and vibrational coupling in a tailored nanoantenna for infrared detection. Phys Rev Lett 101, 157403 (2008). doi: 10.1103/PhysRevLett.101.157403

    CrossRef Google Scholar

    [25] Adato R, Yanik AA, Amsden JJ, Kaplan DL, Omenetto FG et al. Ultra-sensitive vibrational spectroscopy of protein monolayers with plasmonic nanoantenna arrays. Proc Natl Acad Sci USA 106, 19227–19232 (2009). doi: 10.1073/pnas.0907459106

    CrossRef Google Scholar

    [26] Brown LV, Zhao K, King N, Sobhani H, Nordlander P et al. Surface-enhanced infrared absorption using individual cross antennas tailored to chemical moieties. J Am Chem Soc 135, 3688–3695 (2013). doi: 10.1021/ja312694g

    CrossRef Google Scholar

    [27] Dregely D, Neubrech F, Duan HG, Vogelgesang R, Giessen H. Vibrational near-field mapping of planar and buried three-dimensional plasmonic nanostructures. Nat Commun 4, 2237 (2013). doi: 10.1038/ncomms3237

    CrossRef Google Scholar

    [28] Huck C, Neubrech F, Vogt J, Toma A, Gerbert D et al. Surface-enhanced infrared spectroscopy using nanometer-sized gaps. ACS Nano 8, 4908–4914 (2014). doi: 10.1021/nn500903v

    CrossRef Google Scholar

    [29] Sun Q, Yu H, Ueno K, Zu S, Matsuo Y et al. Revealing the plasmon coupling in gold nanochains directly from the near field. Opto-Electron Adv 2, 180030 (2019).

    Google Scholar

    [30] Neubrech F, Weber D, Lovrincic R, Pucci A, Lopes M et al. Resonances of individual lithographic gold nanowires in the infrared. Appl Phys Lett 93, 163105 (2008). doi: 10.1063/1.3003870

    CrossRef Google Scholar

    [31] Larkin P. Preface. In Larkin P, ed. Infrared and Raman Spectroscopy: Principles and Spectral Interpretation ix–x (Elsevier, 2011);https://doi.org/10.1016/B978-0-12-386984-5.10013-8.

    Google Scholar

    [32] Adato R, Yanik AA, Altug H. On chip plasmonic monopole nano-antennas and circuits. Nano Lett 11, 5219–5226 (2011). doi: 10.1021/nl202528h

    CrossRef Google Scholar

    [33] Chen K, Adato R, Altug H. Dual-band perfect absorber for multispectral plasmon-enhanced infrared spectroscopy. ACS Nano 6, 7998–8006 (2012). doi: 10.1021/nn3026468

    CrossRef Google Scholar

    [34] Turkmen M, Aksu S, Çetin AE, Yanik AA, Altug H. Multi-resonant metamaterials based on UT-shaped nano-aperture antennas. Opt Express 19, 7921–7928 (2011). doi: 10.1364/OE.19.007921

    CrossRef Google Scholar

    [35] Cetin AE, Turkmen M, Aksu S, Etezadi D, Altug H. Multi-resonant compact nanoaperture with accessible large nearfields. Appl Phys B 118, 29–38 (2015). doi: 10.1007/s00340-014-5950-7

    CrossRef Google Scholar

    [36] Yang Y, Dai HT, Sun XW. Fractal diabolo antenna for enhancing and confining the optical magnetic field. AIP Adv 4, 017123 (2014). doi: 10.1063/1.4863093

    CrossRef Google Scholar

    [37] Gottheim S, Zhang H, Govorov AO, Halas NJ. Fractal nanoparticle plasmonics: the cayley tree. ACS Nano 9, 3284–3292 (2015). doi: 10.1021/acsnano.5b00412

    CrossRef Google Scholar

    [38] Aslan E, Aslan E, Wang R, Hong MK, Erramilli S et al. Multispectral cesaro-type fractal plasmonic nanoantennas. ACS Photonics 3, 2102–2111 (2016). doi: 10.1021/acsphotonics.6b00540

    CrossRef Google Scholar

    [39] Aouani H, Šípová H, Rahmani M, Navarro-Cia M, Hegnerová K et al. Ultrasensitive broadband probing of molecular vibrational modes with multifrequency optical antennas. ACS Nano 7, 669–675 (2013). doi: 10.1021/nn304860t

    CrossRef Google Scholar

    [40] Bingham CM, Tao H, Liu XL, Averitt RD, Zhang X et al. Planar wallpaper group metamaterials for novel terahertz applications. Opt Express 16, 18565–18575 (2008). doi: 10.1364/OE.16.018565

    CrossRef Google Scholar

    [41] Jiang ZH, Yun S, Toor F, Werner DH, Mayer TS. Conformal dual-band near-perfectly absorbing mid-infrared metamaterial coating. ACS Nano 5, 4641–4647 (2011). doi: 10.1021/nn2004603

    CrossRef Google Scholar

    [42] Rodrigo D, Tittl A, Ait-Bouziad N, John-Herpin A, Limaj O et al. Resolving molecule-specific information in dynamic lipid membrane processes with multi-resonant infrared metasurfaces. Nat Commun 9, 2160 (2018). doi: 10.1038/s41467-018-04594-x

    CrossRef Google Scholar

    [43] Olmon RL, Krenz PM, Jones AC, Boreman GD, Raschke MB. Near-field imaging of optical antenna modes in the mid-infrared. Opt Express 16, 20295–20305 (2008). doi: 10.1364/OE.16.020295

    CrossRef Google Scholar

    [44] Rang M, Jones AC, Zhou F, Li ZY, Wiley BJ et al. Optical near-field mapping of plasmonic nanoprisms. Nano Lett 8, 3357–3363 (2008). doi: 10.1021/nl801808b

    CrossRef Google Scholar

    [45] Schnell M, García-Etxarri A, Huber AJ, Crozier K, Aizpurua J et al. Controlling the near-field oscillations of loaded plasmonic nanoantennas. Nat Photonics 3, 287–291 (2009). doi: 10.1038/nphoton.2009.46

    CrossRef Google Scholar

    [46] Alonso-González P, Albella P, Schnell M, Chen J, Huth F et al. Resolving the electromagnetic mechanism of surface-enhanced light scattering at single hot spots. Nat Commun 3, 684 (2012). doi: 10.1038/ncomms1674

    CrossRef Google Scholar

    [47] Alonso-González P, Albella P, Golmar F, Arzubiaga L, Casanova F et al. Visualizing the near-field coupling and interference of bonding and anti-bonding modes in infrared dimer nanoantennas. Opt Express 21, 1270–1280 (2013). doi: 10.1364/OE.21.001270

    CrossRef Google Scholar

    [48] Olmon RL, Slovick B, Johnson TW, Shelton D, Oh SH et al. Optical dielectric function of gold. Phys Rev B 86, 235147 (2012). doi: 10.1103/PhysRevB.86.235147

    CrossRef Google Scholar

    [49] Chen YQ, Xiang Q, Li ZQ, Wang YS, Meng YH et al. “Sketch and peel” lithography for high-resolution multiscale patterning. Nano Lett 16, 3253–3259 (2016). doi: 10.1021/acs.nanolett.6b00788

    CrossRef Google Scholar

    [50] Chen YQ, Bi KX, Wang QJ, Zheng MJ, Liu Q et al. Rapid focused ion beam milling based fabrication of plasmonic nanoparticles and assemblies via “sketch and peel” strategy. ACS Nano 10, 11228–11236 (2016). doi: 10.1021/acsnano.6b06290

    CrossRef Google Scholar

    [51] Chen YQ, Hu YQ, Zhao JY, Deng YS, Wang ZL et al. Topology optimization-based inverse design of plasmonic nanodimer with maximum near-field enhancement. Adv Funct Mater 30, 2000642 (2020). doi: 10.1002/adfm.202000642

    CrossRef Google Scholar

    [52] Chen YQ, Shu ZW, Feng ZY, Kong LA, Liu Y et al. Reliable patterning, transfer printing and post-assembly of multiscale adhesion-free metallic structures for nanogap device applications. Adv Funct Mater 30, 2002549 (2020). doi: 10.1002/adfm.202002549

    CrossRef Google Scholar

    [53] Chen YQ, Shu ZW, Zhang S, Zeng P, Liang HK et al. Sub-10 nm fabrication: methods and applications. Int J Extrem Manuf 3, 032002 (2021). doi: 10.1088/2631-7990/ac087c

    CrossRef Google Scholar

    [54] Eilers PHC. A perfect smoother. Anal Chem 75, 3631–3636 (2003). doi: 10.1021/ac034173t

    CrossRef Google Scholar

    [55] Ocelic N, Huber A, Hillenbrand R. Pseudoheterodyne detection for background-free near-field spectroscopy. Appl Phys Lett 89, 101124 (2006). doi: 10.1063/1.2348781

    CrossRef Google Scholar

    [56] Duan HG, Fernández-Domínguez AI, Bosman M, Maier SA, Yang JKW. Nanoplasmonics: classical down to the nanometer scale. Nano Lett 12, 1683–1689 (2012). doi: 10.1021/nl3001309

    CrossRef Google Scholar

    [57] Wang T, Dong ZG, Koay EHH, Yang JKW. Surface-enhanced infrared absorption spectroscopy using charge transfer plasmons. ACS Photonics 6, 1272–1278 (2019). doi: 10.1021/acsphotonics.9b00229

    CrossRef Google Scholar

    [58] Wen FF, Zhang Y, Gottheim S, King NS, Zhang Y et al. Charge transfer plasmons: optical frequency conductances and tunable infrared resonances. ACS Nano 9, 6428–6435 (2015). doi: 10.1021/acsnano.5b02087

    CrossRef Google Scholar

    [59] Zhu D, Bosman M, Yang JKW. A circuit model for plasmonic resonators. Opt Express 22, 9809–9819 (2014). doi: 10.1364/OE.22.009809

    CrossRef Google Scholar

    [60] Huang CP, Yin XG, Huang H, Zhu YY. Study of plasmon resonance in a gold nanorod with an LC circuit model. Opt Express 17, 6407–6413 (2009). doi: 10.1364/OE.17.006407

    CrossRef Google Scholar

    [61] Khurgin JB, Sun G. Scaling of losses with size and wavelength in nanoplasmonics and metamaterials. Appl Phys Lett 99, 211106 (2011). doi: 10.1063/1.3664105

    CrossRef Google Scholar

    [62] Zhou J, Koschny T, Kafesaki M, Economou EN, Pendry JB et al. Saturation of the magnetic response of split-ring resonators at optical frequencies. Phys Rev Lett 95, 223902 (2005). doi: 10.1103/PhysRevLett.95.223902

    CrossRef Google Scholar

    [63] Giannini V, Francescato Y, Amrania H, Phillips CC, Maier SA. Fano resonances in nanoscale plasmonic systems: a parameter-free modeling approach. Nano Lett 11, 2835–2840 (2011). doi: 10.1021/nl201207n

    CrossRef Google Scholar

    [64] Neuman T, Alonso-González P, Garcia-Etxarri A, Schnell M, Hillenbrand R et al. Mapping the near fields of plasmonic nanoantennas by scattering-type scanning near-field optical microscopy. Laser Photonics Rev 9, 637–649 (2015). doi: 10.1002/lpor.201500031

    CrossRef Google Scholar

    [65] Ahmed A, Gordon R. Single molecule directivity enhanced raman scattering using nanoantennas. Nano Lett 12, 2625–2630 (2012). doi: 10.1021/nl301029e

    CrossRef Google Scholar

    [66] Wang DX, Zhu WQ, Best MD, Camden JP, Crozier KB. Directional raman scattering from single molecules in the feed gaps of optical antennas. Nano Lett 13, 2194–2198 (2013). doi: 10.1021/nl400698w

    CrossRef Google Scholar

    [67] Brown LV, Yang X, Zhao K, Zheng BY, Nordlander P et al. Fan-shaped gold nanoantennas above reflective substrates for surface-enhanced infrared absorption (SEIRA). Nano Lett 15, 1272–1280 (2015). doi: 10.1021/nl504455s

    CrossRef Google Scholar

    [68] Born MAX, Wolf E. Basic properties of the electromagnetic field. In Born MAX, Wolf E, eds. Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light 1–70 (Pergamon, 1980);https://doi.org/10.1016/B978-0-08-026482-0.50008-6.

    Google Scholar

    [69] Masatoshi O. Dynamic processes in electrochemical reactions studied by surface-enhanced infrared absorption spectroscopy (SEIRAS). Bull Chem Soc Jpn 70, 2861–2880 (1997). doi: 10.1246/bcsj.70.2861

    CrossRef Google Scholar

  • Supplementary information for Nanobridged rhombic antennas supporting both dipolar and high-order plasmonic modes with spatially superimposed hotspots in the midinfrared
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(7)

Tables(1)

Article Metrics

Article views(7728) PDF downloads(942) Cited by(0)

Access History
Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint