Citation: | You EM, Chen YQ, Yi J, Meng ZD, Chen Q et al. Nanobridged rhombic antennas supporting both dipolar and high-order plasmonic modes with spatially superimposed hotspots in the mid-infrared. Opto-Electron Adv 4, 210076 (2021). doi: 10.29026/oea.2021.210076 |
[1] | Aroca RF, Ross DJ, Domingo C. Surface-enhanced infrared spectroscopy. Appl Spectrosc 58, 324A–338A (2004). doi: 10.1366/0003702042475420 |
[2] | Lal S, Grady NK, Kundu J, Levin CS, Lassiter JB et al. Tailoring plasmonic substrates for surface enhanced spectroscopies. Chem Soc Rev 37, 898–911 (2008). doi: 10.1039/b705969h |
[3] | Neubrech F, Klevenz M, Meng F, Pucci A. Nanoantennas for surface enhanced infrared spectroscopy. In Cat DT, Pucci A, Wandelt K, eds. Physics and Engineering of New Materials 321–325 (Springer, 2009);https://doi.org/10.1007/978-3-540-88201-5_37. |
[4] | Neubrech F, Huck C, Weber K, Pucci A, Giessen H. Surface-enhanced infrared spectroscopy using resonant nanoantennas. Chem Rev 117, 5110–5145 (2017). doi: 10.1021/acs.chemrev.6b00743 |
[5] | Yang XX, Sun ZP, Low T, Hu H, Guo XD et al. Nanomaterial-based plasmon-enhanced infrared spectroscopy. Adv Mater 30, 1704896 (2018). doi: 10.1002/adma.201704896 |
[6] | Tittl A, John-Herpin A, Leitis A, Arvelo ER, Altug H. Metasurface-based molecular biosensing aided by artificial intelligence. Angew Chem Int Ed 58, 14810–14822 (2019). doi: 10.1002/anie.201901443 |
[7] | Taliercio T, Biagioni P. Semiconductor infrared plasmonics. Nanophotonics 8, 949–990 (2019). doi: 10.1515/nanoph-2019-0077 |
[8] | Caldwell JD, Lindsay L, Giannini V, Vurgaftman I, Reinecke TL et al. Low-loss, infrared and terahertz nanophotonics using surface phonon polaritons. Nanophotonics 4, 44–68 (2015). doi: 10.1515/nanoph-2014-0003 |
[9] | Wang T, Li PN, Chigrin DN, Giles AJ, Bezares FJ et al. Phonon-polaritonic bowtie nanoantennas: controlling infrared thermal radiation at the nanoscale. ACS Photonics 4, 1753–1760 (2017). doi: 10.1021/acsphotonics.7b00321 |
[10] | Alfaro-Mozaz FJ, Alonso-González P, Vélez S, Dolado I, Autore M et al. Nanoimaging of resonating hyperbolic polaritons in linear boron nitride antennas. Nat Commun 8, 15624 (2017). doi: 10.1038/ncomms15624 |
[11] | Autore M, Li PN, Dolado I, Alfaro-Mozaz FJ, Esteban R et al. Boron nitride nanoresonators for phonon-enhanced molecular vibrational spectroscopy at the strong coupling limit. Light Sci Appl 7, 17172 (2018). doi: 10.1038/lsa.2017.172 |
[12] | Ohtsu M. History, current developments, and future directions of near-field optical science. Opto-Electron Adv 3, 190046 (2020). |
[13] | Novotny L, van Hulst N. Antennas for light. Nat Photonics 5, 83–90 (2011). doi: 10.1038/nphoton.2010.237 |
[14] | Dong LL, Yang X, Zhang C, Cerjan B, Zhou LN et al. Nanogapped Au antennas for ultrasensitive surface-enhanced infrared absorption spectroscopy. Nano Lett 17, 5768–5774 (2017). doi: 10.1021/acs.nanolett.7b02736 |
[15] | Chen C, Oh SH, Li M. Coupled-mode theory for plasmonic resonators integrated with silicon waveguides towards mid-infrared spectroscopic sensing. Opt Express 28, 2020–2036 (2020). doi: 10.1364/OE.28.002020 |
[16] | Chen H, Zhang SY, Miller KA, Braun PV. Autonomic molecular transport for ultrasensitive surface-enhanced infrared absorption spectroscopy. ACS Appl Polym Mater 2, 3929–3935 (2020). doi: 10.1021/acsapm.0c00607 |
[17] | Zhang L, Pan J, Zhang Z, Wu H, Yao N et al. Ultrasensitive skin-like wearable optical sensors based on glass micro/nanofibers. Opto-Electron Adv 3, 190022 (2020). |
[18] | Chen Q, Liang L, Zheng Q L, Zhang Y X, Wen L. On-chip readout plasmonic mid-IR gas sensor. Opto-Electron Adv 3, 190040 (2020). |
[19] | Yu N, Wang Q, Capasso F. Beam engineering of quantum cascade lasers. Laser Photonics Rev 6, 24–46 (2012). doi: 10.1002/lpor.201100019 |
[20] | Tong J C, Suo F, Ma J H Z, Tobing L Y M, Qian L et al. Surface plasmon enhanced infrared photodetection. Opto-Electron Adv 2, 180026 (2019). |
[21] | Yao Y, Shankar R, Rauter P, Song Y, Kong J et al. High-responsivity mid-infrared graphene detectors with antenna-enhanced photocarrier generation and collection. Nano Lett 14, 3749–3754 (2014). doi: 10.1021/nl500602n |
[22] | Wang HL, You EM, Panneerselvam R, Ding SY, Tian ZQ. Advances of surface-enhanced Raman and IR spectroscopies: from nano/microstructures to macro-optical design. Light Sci Appl 10, 161 (2021). doi: 10.1038/s41377-021-00599-2 |
[23] | Novotny L. Effective wavelength scaling for optical antennas. Phys Rev Lett 98, 266802 (2007). doi: 10.1103/PhysRevLett.98.266802 |
[24] | Neubrech F, Pucci A, Cornelius TW, Karim S, García-Etxarri A et al. Resonant plasmonic and vibrational coupling in a tailored nanoantenna for infrared detection. Phys Rev Lett 101, 157403 (2008). doi: 10.1103/PhysRevLett.101.157403 |
[25] | Adato R, Yanik AA, Amsden JJ, Kaplan DL, Omenetto FG et al. Ultra-sensitive vibrational spectroscopy of protein monolayers with plasmonic nanoantenna arrays. Proc Natl Acad Sci USA 106, 19227–19232 (2009). doi: 10.1073/pnas.0907459106 |
[26] | Brown LV, Zhao K, King N, Sobhani H, Nordlander P et al. Surface-enhanced infrared absorption using individual cross antennas tailored to chemical moieties. J Am Chem Soc 135, 3688–3695 (2013). doi: 10.1021/ja312694g |
[27] | Dregely D, Neubrech F, Duan HG, Vogelgesang R, Giessen H. Vibrational near-field mapping of planar and buried three-dimensional plasmonic nanostructures. Nat Commun 4, 2237 (2013). doi: 10.1038/ncomms3237 |
[28] | Huck C, Neubrech F, Vogt J, Toma A, Gerbert D et al. Surface-enhanced infrared spectroscopy using nanometer-sized gaps. ACS Nano 8, 4908–4914 (2014). doi: 10.1021/nn500903v |
[29] | Sun Q, Yu H, Ueno K, Zu S, Matsuo Y et al. Revealing the plasmon coupling in gold nanochains directly from the near field. Opto-Electron Adv 2, 180030 (2019). |
[30] | Neubrech F, Weber D, Lovrincic R, Pucci A, Lopes M et al. Resonances of individual lithographic gold nanowires in the infrared. Appl Phys Lett 93, 163105 (2008). doi: 10.1063/1.3003870 |
[31] | Larkin P. Preface. In Larkin P, ed. Infrared and Raman Spectroscopy: Principles and Spectral Interpretation ix–x (Elsevier, 2011);https://doi.org/10.1016/B978-0-12-386984-5.10013-8. |
[32] | Adato R, Yanik AA, Altug H. On chip plasmonic monopole nano-antennas and circuits. Nano Lett 11, 5219–5226 (2011). doi: 10.1021/nl202528h |
[33] | Chen K, Adato R, Altug H. Dual-band perfect absorber for multispectral plasmon-enhanced infrared spectroscopy. ACS Nano 6, 7998–8006 (2012). doi: 10.1021/nn3026468 |
[34] | Turkmen M, Aksu S, Çetin AE, Yanik AA, Altug H. Multi-resonant metamaterials based on UT-shaped nano-aperture antennas. Opt Express 19, 7921–7928 (2011). doi: 10.1364/OE.19.007921 |
[35] | Cetin AE, Turkmen M, Aksu S, Etezadi D, Altug H. Multi-resonant compact nanoaperture with accessible large nearfields. Appl Phys B 118, 29–38 (2015). doi: 10.1007/s00340-014-5950-7 |
[36] | Yang Y, Dai HT, Sun XW. Fractal diabolo antenna for enhancing and confining the optical magnetic field. AIP Adv 4, 017123 (2014). doi: 10.1063/1.4863093 |
[37] | Gottheim S, Zhang H, Govorov AO, Halas NJ. Fractal nanoparticle plasmonics: the cayley tree. ACS Nano 9, 3284–3292 (2015). doi: 10.1021/acsnano.5b00412 |
[38] | Aslan E, Aslan E, Wang R, Hong MK, Erramilli S et al. Multispectral cesaro-type fractal plasmonic nanoantennas. ACS Photonics 3, 2102–2111 (2016). doi: 10.1021/acsphotonics.6b00540 |
[39] | Aouani H, Šípová H, Rahmani M, Navarro-Cia M, Hegnerová K et al. Ultrasensitive broadband probing of molecular vibrational modes with multifrequency optical antennas. ACS Nano 7, 669–675 (2013). doi: 10.1021/nn304860t |
[40] | Bingham CM, Tao H, Liu XL, Averitt RD, Zhang X et al. Planar wallpaper group metamaterials for novel terahertz applications. Opt Express 16, 18565–18575 (2008). doi: 10.1364/OE.16.018565 |
[41] | Jiang ZH, Yun S, Toor F, Werner DH, Mayer TS. Conformal dual-band near-perfectly absorbing mid-infrared metamaterial coating. ACS Nano 5, 4641–4647 (2011). doi: 10.1021/nn2004603 |
[42] | Rodrigo D, Tittl A, Ait-Bouziad N, John-Herpin A, Limaj O et al. Resolving molecule-specific information in dynamic lipid membrane processes with multi-resonant infrared metasurfaces. Nat Commun 9, 2160 (2018). doi: 10.1038/s41467-018-04594-x |
[43] | Olmon RL, Krenz PM, Jones AC, Boreman GD, Raschke MB. Near-field imaging of optical antenna modes in the mid-infrared. Opt Express 16, 20295–20305 (2008). doi: 10.1364/OE.16.020295 |
[44] | Rang M, Jones AC, Zhou F, Li ZY, Wiley BJ et al. Optical near-field mapping of plasmonic nanoprisms. Nano Lett 8, 3357–3363 (2008). doi: 10.1021/nl801808b |
[45] | Schnell M, García-Etxarri A, Huber AJ, Crozier K, Aizpurua J et al. Controlling the near-field oscillations of loaded plasmonic nanoantennas. Nat Photonics 3, 287–291 (2009). doi: 10.1038/nphoton.2009.46 |
[46] | Alonso-González P, Albella P, Schnell M, Chen J, Huth F et al. Resolving the electromagnetic mechanism of surface-enhanced light scattering at single hot spots. Nat Commun 3, 684 (2012). doi: 10.1038/ncomms1674 |
[47] | Alonso-González P, Albella P, Golmar F, Arzubiaga L, Casanova F et al. Visualizing the near-field coupling and interference of bonding and anti-bonding modes in infrared dimer nanoantennas. Opt Express 21, 1270–1280 (2013). doi: 10.1364/OE.21.001270 |
[48] | Olmon RL, Slovick B, Johnson TW, Shelton D, Oh SH et al. Optical dielectric function of gold. Phys Rev B 86, 235147 (2012). doi: 10.1103/PhysRevB.86.235147 |
[49] | Chen YQ, Xiang Q, Li ZQ, Wang YS, Meng YH et al. “Sketch and peel” lithography for high-resolution multiscale patterning. Nano Lett 16, 3253–3259 (2016). doi: 10.1021/acs.nanolett.6b00788 |
[50] | Chen YQ, Bi KX, Wang QJ, Zheng MJ, Liu Q et al. Rapid focused ion beam milling based fabrication of plasmonic nanoparticles and assemblies via “sketch and peel” strategy. ACS Nano 10, 11228–11236 (2016). doi: 10.1021/acsnano.6b06290 |
[51] | Chen YQ, Hu YQ, Zhao JY, Deng YS, Wang ZL et al. Topology optimization-based inverse design of plasmonic nanodimer with maximum near-field enhancement. Adv Funct Mater 30, 2000642 (2020). doi: 10.1002/adfm.202000642 |
[52] | Chen YQ, Shu ZW, Feng ZY, Kong LA, Liu Y et al. Reliable patterning, transfer printing and post-assembly of multiscale adhesion-free metallic structures for nanogap device applications. Adv Funct Mater 30, 2002549 (2020). doi: 10.1002/adfm.202002549 |
[53] | Chen YQ, Shu ZW, Zhang S, Zeng P, Liang HK et al. Sub-10 nm fabrication: methods and applications. Int J Extrem Manuf 3, 032002 (2021). doi: 10.1088/2631-7990/ac087c |
[54] | Eilers PHC. A perfect smoother. Anal Chem 75, 3631–3636 (2003). doi: 10.1021/ac034173t |
[55] | Ocelic N, Huber A, Hillenbrand R. Pseudoheterodyne detection for background-free near-field spectroscopy. Appl Phys Lett 89, 101124 (2006). doi: 10.1063/1.2348781 |
[56] | Duan HG, Fernández-Domínguez AI, Bosman M, Maier SA, Yang JKW. Nanoplasmonics: classical down to the nanometer scale. Nano Lett 12, 1683–1689 (2012). doi: 10.1021/nl3001309 |
[57] | Wang T, Dong ZG, Koay EHH, Yang JKW. Surface-enhanced infrared absorption spectroscopy using charge transfer plasmons. ACS Photonics 6, 1272–1278 (2019). doi: 10.1021/acsphotonics.9b00229 |
[58] | Wen FF, Zhang Y, Gottheim S, King NS, Zhang Y et al. Charge transfer plasmons: optical frequency conductances and tunable infrared resonances. ACS Nano 9, 6428–6435 (2015). doi: 10.1021/acsnano.5b02087 |
[59] | Zhu D, Bosman M, Yang JKW. A circuit model for plasmonic resonators. Opt Express 22, 9809–9819 (2014). doi: 10.1364/OE.22.009809 |
[60] | Huang CP, Yin XG, Huang H, Zhu YY. Study of plasmon resonance in a gold nanorod with an LC circuit model. Opt Express 17, 6407–6413 (2009). doi: 10.1364/OE.17.006407 |
[61] | Khurgin JB, Sun G. Scaling of losses with size and wavelength in nanoplasmonics and metamaterials. Appl Phys Lett 99, 211106 (2011). doi: 10.1063/1.3664105 |
[62] | Zhou J, Koschny T, Kafesaki M, Economou EN, Pendry JB et al. Saturation of the magnetic response of split-ring resonators at optical frequencies. Phys Rev Lett 95, 223902 (2005). doi: 10.1103/PhysRevLett.95.223902 |
[63] | Giannini V, Francescato Y, Amrania H, Phillips CC, Maier SA. Fano resonances in nanoscale plasmonic systems: a parameter-free modeling approach. Nano Lett 11, 2835–2840 (2011). doi: 10.1021/nl201207n |
[64] | Neuman T, Alonso-González P, Garcia-Etxarri A, Schnell M, Hillenbrand R et al. Mapping the near fields of plasmonic nanoantennas by scattering-type scanning near-field optical microscopy. Laser Photonics Rev 9, 637–649 (2015). doi: 10.1002/lpor.201500031 |
[65] | Ahmed A, Gordon R. Single molecule directivity enhanced raman scattering using nanoantennas. Nano Lett 12, 2625–2630 (2012). doi: 10.1021/nl301029e |
[66] | Wang DX, Zhu WQ, Best MD, Camden JP, Crozier KB. Directional raman scattering from single molecules in the feed gaps of optical antennas. Nano Lett 13, 2194–2198 (2013). doi: 10.1021/nl400698w |
[67] | Brown LV, Yang X, Zhao K, Zheng BY, Nordlander P et al. Fan-shaped gold nanoantennas above reflective substrates for surface-enhanced infrared absorption (SEIRA). Nano Lett 15, 1272–1280 (2015). doi: 10.1021/nl504455s |
[68] | Born MAX, Wolf E. Basic properties of the electromagnetic field. In Born MAX, Wolf E, eds. Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light 1–70 (Pergamon, 1980);https://doi.org/10.1016/B978-0-08-026482-0.50008-6. |
[69] | Masatoshi O. Dynamic processes in electrochemical reactions studied by surface-enhanced infrared absorption spectroscopy (SEIRAS). Bull Chem Soc Jpn 70, 2861–2880 (1997). doi: 10.1246/bcsj.70.2861 |
Supplementary information for Nanobridged rhombic antennas supporting both dipolar and high-order plasmonic modes with spatially superimposed hotspots in the midinfrared |
![]() |
(a) Scanning electron microscopy (SEM) image of NBRA structures. (b) Experimental transmittance of the NBRA array (blue curve) and simulated LFEF at the extremities of the structure (purple curve). (c) AFM topography of a single NBRA structure. The scale bars are 1 μm. (d) Sketch and parameters of the NBRA structure, consisting of two rhombic arms connected with each other by a nanobridge. The thickness (t0) and total length (l0) of NBRA are 30 nm and 2800 nm. The nanobridge is 30 nm in width and 130 nm in length. The radius of sharp tip of each arm is 10 nm and α is 30°. (e–h) Measured near-field (e, f) amplitude and (g, h) phase of single NBRA structure at 1100 cm−1 and 2100 cm−1, respectively. (i–l) Simulated |Ez| (i, j) and φz (k, l) of single NBRA structure at 1100 cm−1 and 2100 cm−1, respectively.
The model of (a) NBRA, (b) nano-bridged disks and (c) nano-bridged rectangles. All the structures are placed on the CaF2 substrate. The incident polarizations are along the long-axis of the nanobridge. The thickness and the width of the nanobridge are 30 nm for all three structures. The lengths of the nanobridges are 130 nm for the NBRA and the nanobridged-disks, and 500 nm for the nanobridged-rectangles. The total length of the NBRA is 3000 nm. The radius of the disks are 500 nm. The length and width of the rectangles are 962 nm and 308 nm, respectively. The red points in (a–c) are the positions where the LFEFs are evaluated. The LFEF was evaluated at the point 2 nm away from the structure along the long axis and 15 nm above the CaF2 substrate for the NBRA and the nanobridged-disks. While for the nanobridged-rectangles, the evaluating point is 2 nm away from the corner of the rectangle. (d) The simulated extinction spectra and (e) the LFEFs of all three structures. E-field distributions at the CTP resonance for (f) the NBRA, (g) the nanobridged-disks and (h) the nanobridged-rectangles.
(a) Simulated extinction spectra of NBRA structure with different nanobridge width. (b–c) Simulated mapping of |Ez| of bonding dipolar plasmonic band (b) and bonding quadrupolar plasmonic band (c) of a single NBRA structure with a broken nanobridge and 4 nm gap size. (d–e) Simulated mapping of |Ez| at CTP band (d) and BDP band (e) with 370 nm nanobridge width.
Nanobridge width-dependent (a) resonant frequencies and (b) intensities of CTP and BDP bands. The orange and blue circles are extracted from the simulated extinction spectra (Fig. 3(a)), while the points on the fitting curves are extracted from the spectra of
(a) Experimental transmittance spectra (normalized) as a function of the length of the NBRAs. (b) SEIRA spectra of PNTP on NBRAs with total lengths 2.22, 2.40, 2.57 and 2.90 μm in the range of the CTP band.
(a) SEM image of NBRA dimer. (b) Experimental transmittance of a NBRA and its dimer with gap size 20 nm. (c) AFM topography of a NBRA dimer. The scale bars in (a) and (c) are 1 μm. Measured near-field amplitude (d) and phase (f) of NBRA dimer at 1100 cm−1. Simulated mapping of |Ez| (h) and φz (j) of NBRA dimer at 1100 cm−1. Measured near-field amplitude (e) and phase (g) of NBRA dimer at 2100 cm−1. Simulated mapping of |Ez| (i) and φz (k) of NBRA dimer at 2100 cm−1.
(a) SEM of the cross section of the reflective substrate. A 200 nm gold film is sandwiched between a 1400 nm SiO2 spacer layer and the Si substrate. The scale bar is 1 μm. Inset: schematic of the NBRA dimer-on-reflector structure to integrate the waveguide-cavity coupling and nanogap coupling. (b) Normalized LFEFs of CTP mode (blue curve) and BDP mode (orange curve) as a function of the thickness of the spacer layer. (c) Simulated LFEFs of monomer, dimer and dimer with 1400 nm SiO2 spacer layer. (d) SEIRA spectra of PNTP on NBRA dimer on transmitted substrate or on reflective substrate.