Nemati A, Wang Q, Hong M H, Teng J H. Tunable and reconfigurable metasurfaces and metadevices. Opto-Electron Adv 1, 180009 (2018). doi: 10.29026/oea.2018.180009
Citation: Nemati A, Wang Q, Hong M H, Teng J H. Tunable and reconfigurable metasurfaces and metadevices. Opto-Electron Adv 1, 180009 (2018). doi: 10.29026/oea.2018.180009

Review Open Access

Tunable and reconfigurable metasurfaces and metadevices

More Information
  • Metasurfaces, two-dimensional equivalents of metamaterials, are engineered surfaces consisting of deep subwavelength features that have full control of the electromagnetic waves. Metasurfaces are not only being applied to the current devices throughout the electromagnetic spectrum from microwave to optics but also inspiring many new thrilling applications such as programmable on-demand optics and photonics in future. In order to overcome the limits imposed by passive metasurfaces, extensive researches have been put on utilizing different materials and mechanisms to design active metasurfaces. In this paper, we review the recent progress in tunable and reconfigurable metasurfaces and metadevices through the different active materials deployed together with the different control mechanisms including electrical, thermal, optical, mechanical, and magnetic, and provide the perspective for their future development for applications.
  • 加载中
  • [1] Shelby R A, Smith D R, Schultz S. Experimental verification of a negative index of refraction. Science 292, 77-79 (2001). doi: 10.1126/science.1058847

    CrossRef Google Scholar

    [2] Smith D R, Padilla W J, Vier D C, Nemat-Nasser S C, Schultz S. Composite medium with simultaneously negative permeability and permittivity. Phys Rev Lett 84, 4184-4187 (2000). doi: 10.1103/PhysRevLett.84.4184

    CrossRef Google Scholar

    [3] Schurig D, Mock J J, Justice B J, Cummer S A, Pendry J B et al. Metamaterial electromagnetic cloak at microwave frequencies. Science 314, 977-980 (2006). doi: 10.1126/science.1133628

    CrossRef Google Scholar

    [4] Landy N I, Sajuyigbe S, Mock J J, Smith D R, Padilla W J. Perfect metamaterial absorber. Phys Rev Lett 100, 207402 (2008). doi: 10.1103/PhysRevLett.100.207402

    CrossRef Google Scholar

    [5] Pendry J B, Schurig D, Smith D R. Controlling electromagnetic fields. Science 312, 1780-1782 (2006). doi: 10.1126/science.1125907

    CrossRef Google Scholar

    [6] Smith D R, Vier D C, Koschny T, Soukoulis C M. Electromagnetic parameter retrieval from inhomogeneous metamaterials. Phys Rev E 71, 036617 (2005). doi: 10.1103/PhysRevE.71.036617

    CrossRef Google Scholar

    [7] Vakil A, Engheta N. Transformation optics using graphene. Science 332, 1291-1294 (2011). doi: 10.1126/science.1202691

    CrossRef Google Scholar

    [8] Valentine J, Zhang S, Zentgraf T, Ulin-Avila E, Genov D A et al. Three-dimensional optical metamaterial with a negative refractive index. Nature 455, 376-379 (2008). doi: 10.1038/nature07247

    CrossRef Google Scholar

    [9] Soukoulis C M, Wegener M. Past achievements and future challenges in the development of three-dimensional photonic metamaterials. Nat Photonics 5, 523-530 (2011). doi: 10.1038/nphoton.2011.154

    CrossRef Google Scholar

    [10] Jahani S, Jacob Z. All-dielectric metamaterials. Nat Nanotechnol 11, 23-36 (2016). doi: 10.1038/nnano.2015.304

    CrossRef Google Scholar

    [11] Leonhardt U. Optical conformal mapping. Science 312, 1777-1780 (2006). doi: 10.1126/science.1126493

    CrossRef Google Scholar

    [12] Smith D R, Pendry J B, Wiltshire M C. Metamaterials and negative refractive index. Science 305, 788-792 (2004). doi: 10.1126/science.1096796

    CrossRef Google Scholar

    [13] Shalaev V M. Optical negative-index metamaterials. Nat Photonics 1, 41-48 (2007). doi: 10.1038/nphoton.2006.49

    CrossRef Google Scholar

    [14] Boltasseva A, Shalaev V M. Fabrication of optical negative-index metamaterials: Recent advances and outlook. Metamaterials 2, 1-17 (2008). doi: 10.1016/j.metmat.2008.03.004

    CrossRef Google Scholar

    [15] Yu N F, Capasso F. Flat optics with designer metasurfaces. Nat Mater 13, 139-150 (2014). doi: 10.1038/nmat3839

    CrossRef Google Scholar

    [16] Aieta F, Genevet P, Kats M A, Yu N F, Blanchard R et al. Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces. Nano Lett 12, 4932-4936 (2012). doi: 10.1021/nl302516v

    CrossRef Google Scholar

    [17] Kildishev A V, Boltasseva A, Shalaev V M. Planar photonics with metasurfaces. Science 339, 1232009 (2013). doi: 10.1126/science.1232009

    CrossRef Google Scholar

    [18] Lin D M, Fan P Y, Hasman E, Brongersma M L. Dielectric gradient metasurface optical elements. Science 345, 298-302 (2014). doi: 10.1126/science.1253213

    CrossRef Google Scholar

    [19] Holloway C L, Kuester E F, Gordon J A, O'Hara J, Booth J et al. An overview of the theory and applications of metasurfaces: the two-dimensional equivalents of metamaterials. IEEE Antennas Propag Mag 54, 10-35 (2012).

    Google Scholar

    [20] Falcone F, Lopetegi T, Laso M A G, Baena J D, Bonache J et al. Babinet principle applied to the design of metasurfaces and metamaterials. Phys Rev Lett 93, 197401 (2004). doi: 10.1103/PhysRevLett.93.197401

    CrossRef Google Scholar

    [21] Ni X J, Kildishev A V, Shalaev V M. Metasurface holograms for visible light. Nat Commun 4, 2807 (2013). doi: 10.1038/ncomms3807

    CrossRef Google Scholar

    [22] Arbabi A, Horie Y, Bagheri M, Faraon A. Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission. Nat Nanotechnol 10, 937-943 (2015). doi: 10.1038/nnano.2015.186

    CrossRef Google Scholar

    [23] Yang Y M, Wang W Y, Moitra P, Kravchenko I I, Briggs D P et al. Dielectric meta-reflectarray for broadband linear polarization conversion and optical vortex generation. Nano Lett 14, 1394-1399 (2014). doi: 10.1021/nl4044482

    CrossRef Google Scholar

    [24] Khorasaninejad M, Chen W T, Devlin R C, Oh J, Zhu A Y et al. Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging. Science 352, 1190-1194 (2016). doi: 10.1126/science.aaf6644

    CrossRef Google Scholar

    [25] Pors A, Nielsen M G, Eriksen R L, Bozhevolnyi S I. Broadband focusing flat mirrors based on plasmonic gradient metasurfaces. Nano Lett 13, 829-834 (2013). doi: 10.1021/nl304761m

    CrossRef Google Scholar

    [26] Decker M, Staude I, Falkner M, Dominguez J, Neshev D N et al. High-efficiency dielectric Huygens' surfaces. Adv Opt Mater 3, 813-820 (2015). doi: 10.1002/adom.v3.6

    CrossRef Google Scholar

    [27] Lalanne P, Astilean S, Chavel P, Cambril E, Launois H. Design and fabrication of blazed binary diffractive elements with sampling periods smaller than the structural cutoff. J Opt Soc Am A 16, 1143-1156 (1999). doi: 10.1364/JOSAA.16.001143

    CrossRef Google Scholar

    [28] Sarabandi K, Behdad N. A frequency selective surface with miniaturized elements. IEEE Trans Antennas Propag 55, 1239-1245 (2007). doi: 10.1109/TAP.2007.895567

    CrossRef Google Scholar

    [29] Bayatpur F, Sarabandi K. Single-layer high-order miniaturized-element frequency-selective surfaces. IEEE Trans Microw Theory Tech 56, 774-781 (2008). doi: 10.1109/TMTT.2008.919654

    CrossRef Google Scholar

    [30] Behdad N. Miniaturized-element frequency selective surfaces (MEFSS) using sub-wavelength periodic structures. In Proceedings of 2008 IEEE Radio and Wireless Symposium 347-350 (IEEE, 2008); http://doi.org/10.1109/RWS.2008.4463500.

    Google Scholar

    [31] Si G Y, Zhao Y H, Liu H, Teo S, Zhang M S et al. Annular aperture array based color filter. Appl Phys Lett 99, 033105 (2011). doi: 10.1063/1.3608147

    CrossRef Google Scholar

    [32] Si G Y, Zhao Y H, Lv J T, Lu M Q, Wang F W et al. Reflective plasmonic color filters based on lithographically patterned silver nanorod arrays. Nanoscale 5, 6243-6248 (2013). doi: 10.1039/c3nr01419c

    CrossRef Google Scholar

    [33] Si G Y, Zhao Y H, Leong E S P, Lv J T, Liu Y J. Incident-angle dependent color tuning from a single plasmonic chip. Nanotechnology 25, 455203 (2014). doi: 10.1088/0957-4484/25/45/455203

    CrossRef Google Scholar

    [34] Jiang X X, Leong E S P, Liu Y J, Si G Y. Tuning plasmon resonance in depth-variant plasmonic nanostructures. Mater Des 96, 64-67 (2016). doi: 10.1016/j.matdes.2016.02.005

    CrossRef Google Scholar

    [35] McVay J, Engheta N, Hoorfar A. High impedance metamaterial surfaces using Hilbert-curve inclusions. IEEE Microw Wirel Compon Lett 14, 130-132 (2004). doi: 10.1109/LMWC.2003.822571

    CrossRef Google Scholar

    [36] Bayraktar Z, Turpin J P, Werner D H. Nature-inspired optimization of high-impedance metasurfaces with ultrasmall interwoven unit cells. IEEE Antennas Wirel Propag Lett 10, 1563-1566 (2011). doi: 10.1109/LAWP.2011.2178224

    CrossRef Google Scholar

    [37] Vallecchi A, Langley R J, Schuchinsky A G. High-impedance metasurfaces with interwoven conductor patterns. In Proceedings of the 8th International Congress on Advanced Electromagnetic Materials in Microwaves and Optics 280-282 (IEEE, 2014); http://doi.org/10.1109/MetaMaterials.2014.6948675.

    Google Scholar

    [38] Si G Y, Leong E S P, Pan W, Chum C C, Liu Y J. Plasmon-induced transparency in coupled triangle-rod arrays. Nanotechnology 26, 025201 (2014).

    Google Scholar

    [39] Khorasaninejad M, Shi Z, Zhu A Y, Chen W T, Sanjeev V et al. Achromatic metalens over 60 nm bandwidth in the visible and metalens with reverse chromatic dispersion. Nano Lett 17, 1819-1824 (2017). doi: 10.1021/acs.nanolett.6b05137

    CrossRef Google Scholar

    [40] Yu N F, Genevet P, Kats M A, Aieta F, Tetienne J P et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science 334, 333-337 (2011). doi: 10.1126/science.1210713

    CrossRef Google Scholar

    [41] Chen X Z, Huang L L, Mühlenbernd H, Li G X, Bai B F et al. Dual-polarity plasmonic metalens for visible light. Nat Commun 3, 1198 (2012). doi: 10.1038/ncomms2207

    CrossRef Google Scholar

    [42] Liu H, Wang B, Ke L, Deng J, Chum C C et al. High aspect subdiffraction-limit photolithography via a silver superlens. Nano Lett 12, 1549-1554 (2012). doi: 10.1021/nl2044088

    CrossRef Google Scholar

    [43] Mehmood M Q, Mei S T, Hussain S, Huang K, Siew S Y et al. Visible-frequency metasurface for structuring and spatially multiplexing optical vortices. Adv Mater 28, 2533-2539 (2016). doi: 10.1002/adma.201504532

    CrossRef Google Scholar

    [44] Qin F, Ding L, Zhang L, Monticone F, Chum C C et al. Hybrid bilayer plasmonic metasurface efficiently manipulates visible light. Sci Adv 2, e1501168 (2016). doi: 10.1126/sciadv.1501168

    CrossRef Google Scholar

    [45] Byrnes S J, Lenef A, Aieta F, Capasso F. Designing large, high-efficiency, high-numerical-aperture, transmissive meta-lenses for visible light. Opt Express 24, 5110-5124 (2016). doi: 10.1364/OE.24.005110

    CrossRef Google Scholar

    [46] Chen H T, Padilla W J, Cich M J, Azad A K, Averitt R D et al. A metamaterial solid-state terahertz phase modulator. Nat Photonics 3, 148-151 (2009). doi: 10.1038/nphoton.2009.3

    CrossRef Google Scholar

    [47] Huang Y W, Lee H W, Sokhoyan R, Pala R A, Thyagarajan K et al. Gate-tunable conducting oxide metasurfaces. Nano Lett 16, 5319-5325 (2016). doi: 10.1021/acs.nanolett.6b00555

    CrossRef Google Scholar

    [48] Ou J Y, Plum E, Zhang J F, Zheludev N I. An electromechanically reconfigurable plasmonic metamaterial operating in the near-infrared. Nat Nanotechnol 8, 252-255 (2013). doi: 10.1038/nnano.2013.25

    CrossRef Google Scholar

    [49] Ju L, Geng B S, Horng J, Girit C, Martin M et al. Graphene plasmonics for tunable terahertz metamaterials. Nat Nanotechnol 6, 630-634 (2011). doi: 10.1038/nnano.2011.146

    CrossRef Google Scholar

    [50] Lee S H, Choi M, Kim T T, Lee S, Liu M et al. Switching terahertz waves with gate-controlled active graphene metamaterials. Nat Mater 11, 936-941 (2012). doi: 10.1038/nmat3433

    CrossRef Google Scholar

    [51] Bian Y L, Wu C, Li H Q, Zhai J W. A tunable metamaterial dependent on electric field at terahertz with barium strontium titanate thin film. Appl Phys Lett 104, 042906 (2014). doi: 10.1063/1.4863669

    CrossRef Google Scholar

    [52] Singh R, Azad A K, Jia Q X, Taylor A J, Chen H T. Thermal tunability in terahertz metamaterials fabricated on strontium titanate single-crystal substrates. Opt Lett 36, 1230-1232 (2011). doi: 10.1364/OL.36.001230

    CrossRef Google Scholar

    [53] Wang B X, Zhai X, Wang G Z, Huang W Q, Wang L L. Frequency tunable metamaterial absorber at deep-subwavelength scale. Opt Mater Express 5, 227-235 (2015). doi: 10.1364/OME.5.000227

    CrossRef Google Scholar

    [54] Ou J Y, Plum E, Zhang J F, Zheludev N I. Giant nonlinearity of an optically reconfigurable plasmonic metamaterial. Adv Mater 28, 729-733 (2016). doi: 10.1002/adma.201504467

    CrossRef Google Scholar

    [55] Ou J Y, Plum E, Jiang L, Zheludev N I. Reconfigurable photonic metamaterials. Nano Lett 11, 2142-2144 (2011). doi: 10.1021/nl200791r

    CrossRef Google Scholar

    [56] Chen H T, O'Hara J F, Azad A K, Taylor A J, Averitt R D et al. Experimental demonstration of frequency-agile terahertz metamaterials. Nat Photonics 2, 295-298 (2008). doi: 10.1038/nphoton.2008.52

    CrossRef Google Scholar

    [57] Huber A J, Kazantsev D, Keilmann F, Wittborn J, Hillenbrand R. Simultaneous IR material recognition and conductivity mapping by nanoscale near-field microscopy. Adv Mater 19, 2209-2212 (2007). doi: 10.1002/(ISSN)1521-4095

    CrossRef Google Scholar

    [58] Deng L Y, Teng J H, Liu H W, Wu Q Y, Tang J et al. Direct optical tuning of the terahertz plasmonic response of Insb subwavelength gratings. Adv Opt Mater 1, 128-132 (2013). doi: 10.1002/adom.201200032

    CrossRef Google Scholar

    [59] Zhu Y, Hu X Y, Fu Y L, Yang H, Gong Q H. Ultralow-power and ultrafast all-optical tunable plasmon-induced transparency in metamaterials at optical communication range. Sci Rep 3, 2338 (2013). doi: 10.1038/srep02338

    CrossRef Google Scholar

    [60] Zhu Y, Hu X Y, Yang H, Gong Q H. Ultralow-power all-optical tunable double plasmon-induced transparencies in nonlinear metamaterials. Appl Phys Lett 104, 211108 (2014). doi: 10.1063/1.4881056

    CrossRef Google Scholar

    [61] Zhang F, Hu X Y, Zhu Y, Fu Y L, Yang H et al. Ultrafast all-optical tunable Fano resonance in nonlinear metamaterials. Appl Phys Lett 102, 181109 (2013). doi: 10.1063/1.4804436

    CrossRef Google Scholar

    [62] Zhou Y, Hu X Y, Li C, Yang H, Gong Q H. All-optical tunable dual Fano resonance in nonlinear metamaterials in optical communication range. J Mod Opt 65, 206-212 (2018). doi: 10.1080/09500340.2017.1384511

    CrossRef Google Scholar

    [63] Si G Y, Leong E S P, Jiang X X, Lv J T, Lin J et al. All-optical, polarization-insensitive light tuning properties in silver nanorod arrays covered with photoresponsive liquid crystals. Phys Chem Chem Phys 17, 13223-13227 (2015). doi: 10.1039/C5CP00185D

    CrossRef Google Scholar

    [64] Lapine M, Shadrivov I V, Powell D A, Kivshar Y S. Magnetoelastic metamaterials. Nat Mater 11, 30-33 (2012). doi: 10.1038/nmat3168

    CrossRef Google Scholar

    [65] Zheludev N I, Kivshar Y S. From metamaterials to metadevices. Nat Mater 11, 917-924 (2012). doi: 10.1038/nmat3431

    CrossRef Google Scholar

    [66] Valente J, Ou J Y, Plum E, Youngs I J, Zheludev N I. A magneto-electro-optical effect in a plasmonic nanowire material. Nat Commun 6, 7021 (2015). doi: 10.1038/ncomms8021

    CrossRef Google Scholar

    [67] Liu Q K, Cui Y X, Gardner D, Li X, He S L et al. Self-alignment of plasmonic gold nanorods in reconfigurable anisotropic fluids for tunable bulk metamaterial applications. Nano Lett 10, 1347-1353 (2010). doi: 10.1021/nl9042104

    CrossRef Google Scholar

    [68] Zhang F L, Kang L, Zhao Q, Zhou J, Zhao X P et al. Magnetically tunable left handed metamaterials by liquid crystal orientation. Opt Express 17, 4360-4366 (2009). doi: 10.1364/OE.17.004360

    CrossRef Google Scholar

    [69] Tao H, Strikwerda A C, Fan K, Padilla W J, Zhang X et al. Reconfigurable terahertz metamaterials. Phys Rev Lett 103, 147401 (2009). doi: 10.1103/PhysRevLett.103.147401

    CrossRef Google Scholar

    [70] Kamali S M, Arbabi E, Arbabi A, Horie Y, Faraon A. Highly tunable elastic dielectric metasurface lenses. Laser Photonics Rev 10, 1002-1008 (2016). doi: 10.1002/lpor.201600144

    CrossRef Google Scholar

    [71] Gupta B, Pandey S, Nahata A, Zhang T, Nahata A. Bistable physical geometries for terahertz plasmonic structures using shape memory alloys. Adv Opt Mater 5, 1601008 (2017). doi: 10.1002/adom.201601008

    CrossRef Google Scholar

    [72] Chen Z C, Rahmani M, Gong Y D, Chong C T, Hong M H. Realization of variable three-dimensional terahertz metamaterial tubes for passive resonance tunability. Adv Mater 24, OP143-OP147 (2012). doi: 10.1002/adma.201290000

    CrossRef Google Scholar

    [73] Ee H S, Agarwal R. Tunable metasurface and flat optical zoom lens on a stretchable substrate. Nano Lett 16, 2818-2823 (2016). doi: 10.1021/acs.nanolett.6b00618

    CrossRef Google Scholar

    [74] Fu Y H, Liu A Q, Zhu W M, Zhang X M, Tsai D P et al. A micromachined reconfigurable metamaterial via reconfiguration of asymmetric split-ring resonators. Adv Funct Mater 21, 3589-3594 (2011). doi: 10.1002/adfm.201101087

    CrossRef Google Scholar

    [75] Zhu W M, Liu A Q, Bourouina T, Tsai D P, Teng J H et al. Microelectromechanical Maltese-cross metamaterial with tunable terahertz anisotropy. Nat Commun 3, 1274 (2012). doi: 10.1038/ncomms2285

    CrossRef Google Scholar

    [76] Zhu W M, Liu A Q, Zhang X M, Tsai D P, Bourouina T et al. Switchable magnetic metamaterials using micromachining processes. Adv Mater 23, 1792-1796 (2011). doi: 10.1002/adma.201004341

    CrossRef Google Scholar

    [77] Ho C P, Pitchappa P, Lin Y S, Huang C Y, Kropelnicki P et al. Electrothermally actuated microelectromechanical systems based omega-ring terahertz metamaterial with polarization dependent characteristics. Appl Phys Lett 104, 161104 (2014). doi: 10.1063/1.4871999

    CrossRef Google Scholar

    [78] Hand T, Cummer S. Characterization of tunable metamaterial elements using MEMS switches. IEEE Antennas Wirel Propag Lett 6, 401-404 (2007). doi: 10.1109/LAWP.2007.902807

    CrossRef Google Scholar

    [79] Ma F S, Lin Y S, Zhang X H, Lee C. Tunable multiband terahertz metamaterials using a reconfigurable electric split-ring resonator array. Light Sci Appl 3, e171 (2014). doi: 10.1038/lsa.2014.52

    CrossRef Google Scholar

    [80] Kan T, Isozaki A, Kanda N, Nemoto N, Konishi K et al. Enantiomeric switching of chiral metamaterial for terahertz polarization modulation employing vertically deformable MEMS spirals. Nat Commun 6, 8422 (2015). doi: 10.1038/ncomms9422

    CrossRef Google Scholar

    [81] Han Z L, Kohno K, Fujita H, Hirakawa K, Toshiyoshi H. MEMS reconfigurable metamaterial for terahertz switchable filter and modulator. Opt Express 22, 21326-21339 (2014). doi: 10.1364/OE.22.021326

    CrossRef Google Scholar

    [82] Pitchappa P, Ho C P, Dhakar L, Lee C. Microelectromechanically reconfigurable interpixelated metamaterial for independent tuning of multiple resonances at terahertz spectral region. Optica 2, 571-578 (2015). doi: 10.1364/OPTICA.2.000571

    CrossRef Google Scholar

    [83] Lin Y S, Qian Y, Ma F S, Liu Z, Kropelnicki P et al. Development of stress-induced curved actuators for a tunable THz filter based on double split-ring resonators. Appl Phys Lett 102, 111908 (2013). doi: 10.1063/1.4798244

    CrossRef Google Scholar

    [84] Arbabi E, Arbabi A, Kamali S M, Horie Y, Faraji-Dana M et al. MEMS-tunable dielectric metasurface lens. Nat Commun 9, 812 (2018). doi: 10.1038/s41467-018-03155-6

    CrossRef Google Scholar

    [85] Park J, Kang J H, Liu X G, Brongersma M L. Electrically tunable epsilon-near-zero (ENZ) metafilm absorbers. Sci Rep 5, 15754 (2015). doi: 10.1038/srep15754

    CrossRef Google Scholar

    [86] Park J, Kang J H, Kim S J, Liu X G, Brongersma M L. Dynamic reflection phase and polarization control in metasurfaces. Nano Lett 17, 407-413 (2017). doi: 10.1021/acs.nanolett.6b04378

    CrossRef Google Scholar

    [87] Kim J, Son H, Cho D J, Geng B S, Regan W et al. Electrical control of optical plasmon resonance with graphene. Nano Lett 12, 5598-5602 (2012). doi: 10.1021/nl302656d

    CrossRef Google Scholar

    [88] Yao Y, Shankar R, Kats M A, Song Y, Kong J et al. Electrically tunable metasurface perfect absorbers for ultrathin mid-infrared optical modulators. Nano Lett 14, 6526-6532 (2014). doi: 10.1021/nl503104n

    CrossRef Google Scholar

    [89] Yan H G, Li X S, Chandra B, Tulevski G, Wu Y Q et al. Tunable infrared plasmonic devices using graphene/insulator stacks. Nat Nanotechnol 7, 330-334 (2012). doi: 10.1038/nnano.2012.59

    CrossRef Google Scholar

    [90] Fallahi A, Perruisseau-Carrier J. Design of tunable biperiodic graphene metasurfaces. Phys Rev B 86, 195408 (2012). doi: 10.1103/PhysRevB.86.195408

    CrossRef Google Scholar

    [91] Lee B, Park J, Han G H, Ee H S, Naylor C H et al. Fano resonance and spectrally modified photoluminescence enhancement in monolayer MoS2 integrated with plasmonic nanoantenna array. Nano Lett 15, 3646-3653 (2015). doi: 10.1021/acs.nanolett.5b01563

    CrossRef Google Scholar

    [92] Chen Y G, Kao T S, Ng B, Li X, Luo X G et al. Hybrid phase-change plasmonic crystals for active tuning of lattice resonances. Opt Express 21, 13691-13698 (2013). doi: 10.1364/OE.21.013691

    CrossRef Google Scholar

    [93] Wang Q, Yuan G H, Kiang K S, Sun K, Gholipour B et al. Reconfigurable phase-change photomask for grayscale photolithography. Appl Phys Lett 110, 201110 (2017). doi: 10.1063/1.4983198

    CrossRef Google Scholar

    [94] Zhang T H, Mei S T, Wang Q, Liu H, Lim C T et al. Reconfigurable optical manipulation by phase change material waveguides. Nanoscale 9, 6895-6900 (2017). doi: 10.1039/C7NR00876G

    CrossRef Google Scholar

    [95] Peng X Y, Wang B, Teng J H, Kana J B K, Zhang X H. Active near infrared linear polarizer based on VO2 phase transition. J Appl Phys 114, 163103 (2013). doi: 10.1063/1.4827193

    CrossRef Google Scholar

    [96] Wang D C, Zhang L C, Gu Y H, Mehmood M Q, Gong Y D et al. Switchable ultrathin quarter-wave plate in terahertz using active phase-change metasurface. Sci Rep 5, 15020 (2015). doi: 10.1038/srep15020

    CrossRef Google Scholar

    [97] Wang Q, Rogers E T F, Gholipour B, Wang C M, Yuan G H et al. Optically reconfigurable metasurfaces and photonic devices based on phase change materials. Nat Photonics 10, 60-65 (2016). doi: 10.1038/nphoton.2015.247

    CrossRef Google Scholar

    [98] Chen Y G, Li X, Luo X G, Maier S A, Hong M H. Tunable near-infrared plasmonic perfect absorber based on phase-change materials. Photonics Res 3, 54-57 (2015). doi: 10.1364/PRJ.3.000054

    CrossRef Google Scholar

    [99] Zhao Q, Kang L, Du B, Li B, Zhou J et al. Electrically tunable negative permeability metamaterials based on nematic liquid crystals. Appl Phys Lett 90, 011112 (2007). doi: 10.1063/1.2430485

    CrossRef Google Scholar

    [100] Shrekenhamer D, Chen W C, Padilla W J. Liquid crystal tunable metamaterial absorber. Phys Rev Lett 110, 177403 (2013). doi: 10.1103/PhysRevLett.110.177403

    CrossRef Google Scholar

    [101] Liu Y J, Si G Y, Leong E S P, Xiang N, Danner A J et al. Light-driven plasmonic color filters by overlaying photoresponsive liquid crystals on gold annular aperture arrays. Adv Mater 24, OP131-OP135 (2012).

    Google Scholar

    [102] Xiao S M, Chettiar U K, Kildishev A V, Drachev V, Khoo I C et al. Tunable magnetic response of metamaterials. Appl Phys Lett 95, 033115 (2009). doi: 10.1063/1.3182857

    CrossRef Google Scholar

    [103] Wang X D, Kwon D H, Werner D H, Khoo I C, Kildishev A V et al. Tunable optical negative-index metamaterials employing anisotropic liquid crystals. Appl Phys Lett 91, 143122 (2007). doi: 10.1063/1.2795345

    CrossRef Google Scholar

    [104] Stratford K, Henrich O, Lintuvuori J S, Cates M E, Marenduzzo D. Self-assembly of colloid-cholesteric composites provides a possible route to switchable optical materials. Nat Commun 5, 3954 (2014). doi: 10.1038/ncomms4954

    CrossRef Google Scholar

    [105] Dai H T, Chen L, Zhang B, Si G Y, Liu Y J. Optically isotropic, electrically tunable liquid crystal droplet arrays formed by photopolymerization-induced phase separation. Opt Lett 40, 2723-2726 (2015). doi: 10.1364/OL.40.002723

    CrossRef Google Scholar

    [106] Si G Y, Zhao Y H, Leong E S P, Liu Y J. Liquid-crystal-enabled active plasmonics: a review. Materials 7, 1296-1317 (2014). doi: 10.3390/ma7021296

    CrossRef Google Scholar

    [107] Chen H T, Padilla W J, Zide J M O, Gossard A C, Taylor A J et al. Active terahertz metamaterial devices. Nature 444, 597-600 (2006). doi: 10.1038/nature05343

    CrossRef Google Scholar

    [108] Savo S, Shrekenhamer D, Padilla W J. Liquid crystal metamaterial absorber spatial light modulator for THz applications. Adv Opt Mater 2, 275-279 (2014). doi: 10.1002/adom.v2.3

    CrossRef Google Scholar

    [109] Sautter J, Staude I, Decker M, Rusak E, Neshev D N et al. Active tuning of all-dielectric metasurfaces. ACS Nano 9, 4308-4315 (2015). doi: 10.1021/acsnano.5b00723

    CrossRef Google Scholar

    [110] Gao J W, Kempa K, Giersig M, Akinoglu E M, Han B et al. Physics of transparent conductors. Adv Phys 65, 553-617 (2016). doi: 10.1080/00018732.2016.1226804

    CrossRef Google Scholar

    [111] Edwards P P, Porch A, Jones M O, Morgan D V, Perks R M. Basic materials physics of transparent conducting oxides. Dalton Trans, 2995-3002 (2004).

    Google Scholar

    [112] Chopra K, Major S, Pandya D K. Transparent conductors—a status review. Thin Solid Films 102, 1-46 (1983). doi: 10.1016/0040-6090(83)90256-0

    CrossRef Google Scholar

    [113] Riza M A, Ibrahim M A, Ahamefula U C, Teridi M A M, Ludin N A et al. Prospects and challenges of perovskite type transparent conductive oxides in photovoltaic applications. Part Ⅰ-Material developments. Solar Energy 137, 371-378 (2016). doi: 10.1016/j.solener.2016.08.042

    CrossRef Google Scholar

    [114] Riza M A, Ibrahim M A, Ahamefula U C, Teridi M A M, Ludin N A et al. Prospects and challenges of perovskite type transparent conductive oxides in photovoltaic applications. Part Ⅱ-Synthesis and deposition. Solar Energy 139, 309-317 (2016). doi: 10.1016/j.solener.2016.08.045

    CrossRef Google Scholar

    [115] Silveirinha M, Engheta N. Tunneling of electromagnetic energy through subwavelength channels and bends using ε-near-zero materials. Phys Rev Lett 97, 157403 (2006). doi: 10.1103/PhysRevLett.97.157403

    CrossRef Google Scholar

    [116] Alu A, Silveirinha M G, Salandrino A, Engheta N. Epsilon-near-zero metamaterials and electromagnetic sources: Tailoring the radiation phase pattern. Phys Rev B 75, 155410 (2007). doi: 10.1103/PhysRevB.75.155410

    CrossRef Google Scholar

    [117] Naik G V, Shalaev V M, Boltasseva A. Alternative plasmonic materials: beyond gold and silver. Adv Mater 25, 3264-3294 (2013). doi: 10.1002/adma.v25.24

    CrossRef Google Scholar

    [118] Naik G V, Kim J, Boltasseva A. Oxides and nitrides as alternative plasmonic materials in the optical range [Invited]. Opt Mater Express 1, 1090-1099 (2011). doi: 10.1364/OME.1.001090

    CrossRef Google Scholar

    [119] Feigenbaum E, Diest K, Atwater H A. Unity-order index change in transparent conducting oxides at visible frequencies. Nano Lett 10, 2111-2116 (2010). doi: 10.1021/nl1006307

    CrossRef Google Scholar

    [120] Shi K F, Haque R R, Zhao B Y, Zhao R C, Lu Z L. Broadband electro-optical modulator based on transparent conducting oxide. Opt Lett 39, 4978-4981 (2014). doi: 10.1364/OL.39.004978

    CrossRef Google Scholar

    [121] Zhu Y, Hu X Y, Chai Z, Yang H, Gong Q H. Active control of chirality in nonlinear metamaterials. Appl Phys Lett 106, 091109 (2015). doi: 10.1063/1.4914343

    CrossRef Google Scholar

    [122] Humphrey J L, Kuciauskas D. Optical susceptibilities of supported indium tin oxide thin films. J Appl Phys 100, 113123 (2006). doi: 10.1063/1.2392995

    CrossRef Google Scholar

    [123] Kasap S, Capper P. Springer Handbook of Electronic and Photonic Materials (Springer, New York, 2006).

    Google Scholar

    [124] Ahmed A, Goldthorpe I A, Khandani A K. Electrically tunable materials for microwave applications. Appl Phys Rev 2, 011302 (2015). doi: 10.1063/1.4906255

    CrossRef Google Scholar

    [125] Yang X Y, Yang J H, Hu X Y, Zhu Y, Yang H et al. Multilayer-WS2: ferroelectric composite for ultrafast tunable metamaterial-induced transparency applications. Appl Phys Lett 107, 081110 (2015). doi: 10.1063/1.4929701

    CrossRef Google Scholar

    [126] Hu X Y, Zhang Y B, Fu Y L, Yang H, Gong Q H. Low-power and ultrafast all-optical tunable nanometer-scale photonic metamaterials. Adv Mater 23, 4295-4300 (2011). doi: 10.1002/adma.201101350

    CrossRef Google Scholar

    [127] Zhou Y, Yang X Y, Hu X Y, Yang H, Gong Q H. Multilayer-MoS2-microsheet/(Nano-Au:LiNbO3) for all-optical tunable metamaterial-induced transparency. J Opt 17, 105102 (2015). doi: 10.1088/2040-8978/17/10/105102

    CrossRef Google Scholar

    [128] Bibbò L, Khan K, Liu Q, Lin M, Wang Q et al. Tunable narrowband antireflection optical filter with a metasurface. Photonics Res 5, 500-506 (2017). doi: 10.1364/PRJ.5.000500

    CrossRef Google Scholar

    [129] Luo C Y, Li D, Luo Q, Yue J, Gao P et al. Design of a tunable multiband terahertz waves absorber. J Alloys Compd 652, 18-24 (2015). doi: 10.1016/j.jallcom.2015.08.089

    CrossRef Google Scholar

    [130] Yahiaoui R, Němec H, Kužel P, Kadlec F, Kadlec C et al. Tunable THz metamaterials based on an array of paraelectric SrTiO3 rods. Appl Phys A 103, 689-692 (2011). doi: 10.1007/s00339-011-6335-y

    CrossRef Google Scholar

    [131] Khuyen B X, Tung B S, Yoo Y J, Kim Y J, Lam V D et al. Ultrathin metamaterial-based perfect absorbers for VHF and THz bands. Curr Appl Phys 16, 1009-1014 (2016). doi: 10.1016/j.cap.2016.05.027

    CrossRef Google Scholar

    [132] Luo C Y, Li Z Z, Guo Z H, Yue J, Luo Q et al. Tunable metamaterial dual-band terahertz absorber. Solid State Commun 222, 32-36 (2015). doi: 10.1016/j.ssc.2015.08.009

    CrossRef Google Scholar

    [133] Peng R G, Xiao Z Q, Zhao Q, Zhang F L, Meng Y G et al. Temperature-controlled chameleonlike cloak. Phys Rev X 7, 011033 (2017).

    Google Scholar

    [134] Zhao Y J, Li B W, Lan C W, Bi K, Qu Z W. Tunable silicon-based all-dielectric metamaterials with strontium titanate thin film in terahertz range. Opt Express 25, 22158-22163 (2017). doi: 10.1364/OE.25.022158

    CrossRef Google Scholar

    [135] Yeh L H, Kiang J F. Microwave tunable metasurfaces implemented with ferroelectric materials and periodical copper wires. Prog Electromagn Res 37, 191-202 (2014). doi: 10.2528/PIERM14061606

    CrossRef Google Scholar

    [136] Gong Z B, Li C, Hu X Y, Yang H, Gong Q H. Active control of highly efficient third-harmonic generation in ultrathin nonlinear metasurfaces. Opt Mater 60, 552-558 (2016). doi: 10.1016/j.optmat.2016.09.029

    CrossRef Google Scholar

    [137] Ma Z C, Xu Z M, Luo C Y, Peng J, Li Z P et al. Dynamical thermal metamaterial response at terahertz frequencies. Ferroelectrics 507, 4-11 (2017). doi: 10.1080/00150193.2017.1282782

    CrossRef Google Scholar

    [138] Luo C Y, Li D, Yao J Q, Ling F R. Direct thermal tuning of the terahertz plasmonic response of semiconductor metasurface. J Electromagn Waves Appl 29, 2512-2522 (2015). doi: 10.1080/09205071.2015.1111170

    CrossRef Google Scholar

    [139] Wu L, Du T, Xu N N, Ding C F, Li H et al. A new Ba0.6Sr0.4TiO3-Silicon hybrid metamaterial device in terahertz regime. Small 12, 2610-2615 (2016). doi: 10.1002/smll.v12.19

    CrossRef Google Scholar

    [140] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y et al. Electric field effect in atomically thin carbon films. Science 306, 666-669 (2004). doi: 10.1126/science.1102896

    CrossRef Google Scholar

    [141] Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I et al. Two-dimensional gas of massless Dirac fermions in graphene. Nature 438, 197-200 (2005). doi: 10.1038/nature04233

    CrossRef Google Scholar

    [142] Wang F, Zhang Y B, Tian C S, Girit C, Zettl A et al. Gate-variable optical transitions in graphene. Science 320, 206-209 (2008). doi: 10.1126/science.1152793

    CrossRef Google Scholar

    [143] Zhao X L, Yuan C, Zhu L, Yao J Q. Graphene-based tunable terahertz plasmon-induced transparency metamaterial. Nanoscale 8, 15273-15280 (2016). doi: 10.1039/C5NR07114C

    CrossRef Google Scholar

    [144] Huidobro P A, Kraft M, Maier S A, Pendry J B. Graphene as a tunable anisotropic or isotropic plasmonic metasurface. Acs Nano 10, 5499-5506 (2016). doi: 10.1021/acsnano.6b01944

    CrossRef Google Scholar

    [145] Yao G, Ling F R, Yue J, Luo C Y, Luo Q et al. Dynamically electrically tunable broadband absorber based on graphene analog of electromagnetically induced transparency. IEEE Photonics J 8, 7800808 (2016).

    Google Scholar

    [146] Dabidian N, Kholmanov I, Khanikaev A B, Tatar K, Trendafilov S et al. Electrical switching of infrared light using graphene integration with plasmonic Fano resonant metasurfaces. ACS Photonics 2, 216-227 (2015). doi: 10.1021/ph5003279

    CrossRef Google Scholar

    [147] Jadidi M M, Sushkov A B, Myers-Ward R L, Boyd A K, Daniels K M et al. Tunable terahertz hybrid metal-graphene plasmons. Nano Lett 15, 7099-7104 (2015). doi: 10.1021/acs.nanolett.5b03191

    CrossRef Google Scholar

    [148] He X Y, Zhao Z Y, Shi W Z. Graphene-supported tunable near-IR metamaterials. Opt Lett 40, 178-181 (2015). doi: 10.1364/OL.40.000178

    CrossRef Google Scholar

    [149] Cai Y J, Zhu J F, Liu Q H. Tunable enhanced optical absorption of graphene using plasmonic perfect absorbers. Appl Phys Lett 106, 043105 (2015). doi: 10.1063/1.4906996

    CrossRef Google Scholar

    [150] Vasić B, Jakovljević M M, Isić G, Gajić R. Tunable metamaterials based on split ring resonators and doped graphene. Appl Phys Lett 103, 011102 (2013). doi: 10.1063/1.4812989

    CrossRef Google Scholar

    [151] Liu P Q, Luxmoore I J, Mikhailov S A, Savostianova N A, Valmorra F et al. Highly tunable hybrid metamaterials employing split-ring resonators strongly coupled to graphene surface plasmons. Nat Commun 6, 8969 (2015). doi: 10.1038/ncomms9969

    CrossRef Google Scholar

    [152] Li J X, Yu P, Cheng H, Liu W W, Li Z C et al. Optical polarization encoding using graphene-loaded plasmonic metasurfaces. Adv Opt Mater 4, 91-98 (2016). doi: 10.1002/adom.201500398

    CrossRef Google Scholar

    [153] Zhang Y P, Li T T, Chen Q, Zhang H Y, O'Hara J F et al. Independently tunable dual-band perfect absorber based on graphene at mid-infrared frequencies. Sci Rep 5, 18463 (2015).

    Google Scholar

    [154] He X Y, Lin F T, Liu F, Shi W Z. Terahertz tunable graphene Fano resonance. Nanotechnology 27, 485202 (2016). doi: 10.1088/0957-4484/27/48/485202

    CrossRef Google Scholar

    [155] Li Q, Tian Z, Zhang X Q, Xu N N, Singh R et al. Dual control of active graphene-silicon hybrid metamaterial devices. Carbon 90, 146-153 (2015). doi: 10.1016/j.carbon.2015.04.015

    CrossRef Google Scholar

    [156] Argyropoulos C. Enhanced transmission modulation based on dielectric metasurfaces loaded with graphene. Opt Express 23, 23787-23797 (2015). doi: 10.1364/OE.23.023787

    CrossRef Google Scholar

    [157] He X Y. Tunable terahertz graphene metamaterials. Carbon 82, 229-237 (2015). doi: 10.1016/j.carbon.2014.10.066

    CrossRef Google Scholar

    [158] Fan Y C, Shen N H, Koschny T, Soukoulis C M. Tunable terahertz meta-surface with graphene cut-wires. ACS Photonics 2, 151-156 (2015). doi: 10.1021/ph500366z

    CrossRef Google Scholar

    [159] Papasimakis N, Thongrattanasiri S, Zheludev N I, de Abajo F J G. The magnetic response of graphene split-ring metamaterials. Light-Sci Appl 2, e78 (2013). doi: 10.1038/lsa.2013.34

    CrossRef Google Scholar

    [160] Cheng H, Chen S Q, Yu P, Li J X, Xie B Y et al. Dynamically tunable broadband mid-infrared cross polarization converter based on graphene metamaterial. Appl Phys Lett 103, 223102 (2013). doi: 10.1063/1.4833757

    CrossRef Google Scholar

    [161] Yao G, Ling F R, Yue J, Luo C Y, Ji J et al. Dual-band tunable perfect metamaterial absorber in the THz range. Opt Express 24, 1518-1527 (2016). doi: 10.1364/OE.24.001518

    CrossRef Google Scholar

    [162] Othman M A, Guclu C, Capolino F. Graphene-based tunable hyperbolic metamaterials and enhanced near-field absorption. Opt Express 21, 7614-7632 (2013). doi: 10.1364/OE.21.007614

    CrossRef Google Scholar

    [163] Kumar A, Low T, Fung K H, Avouris P, Fang N X. Tunable light-matter interaction and the role of hyperbolicity in graphene-hBN system. Nano Lett 15, 3172-3180 (2015). doi: 10.1021/acs.nanolett.5b01191

    CrossRef Google Scholar

    [164] Zhu B F, Ren G B, Zheng S W, Lin Z, Jian S S. Nanoscale dielectric-graphene-dielectric tunable infrared waveguide with ultrahigh refractive indices. Opt Express 21, 17089-17096 (2013). doi: 10.1364/OE.21.017089

    CrossRef Google Scholar

    [165] Zhu W R, Xiao F J, Kang M, Sikdar D, Premaratne M. Tunable terahertz left-handed metamaterial based on multi-layer graphene-dielectric composite. Appl Phys Lett 104, 051902 (2014). doi: 10.1063/1.4863929

    CrossRef Google Scholar

    [166] Dong H, Conti C, Marini A, Biancalana F. Terahertz relativistic spatial solitons in doped graphene metamaterials. J Phys B-At Mol Opt Phys 46, 155401 (2013). doi: 10.1088/0953-4075/46/15/155401

    CrossRef Google Scholar

    [167] Yin X H, Steinle T, Huang L L, Taubner T, Wuttig M et al. Beam switching and bifocal zoom lensing using active plasmonic metasurfaces. Light-Sci Appl 6, e17016 (2017). doi: 10.1038/lsa.2017.16

    CrossRef Google Scholar

    [168] Cao T, Wei C W, Simpson R E, Zhang L, Cryan M J. Fast tuning of double Fano resonance using a phase-change metamaterial under low power intensity. Sci Rep 4, 4463 (2014).

    Google Scholar

    [169] Alaee R, Albooyeh M, Tretyakov S, Rockstuhl C. Phase-change material-based nanoantennas with tunable radiation patterns. Opt Lett 41, 4099-4102 (2016). doi: 10.1364/OL.41.004099

    CrossRef Google Scholar

    [170] Cao T, Wei C W, Mao L B. Ultrafast tunable chirped phase-change metamaterial with a low power. Opt Express 23, 4092-4105 (2015). doi: 10.1364/OE.23.004092

    CrossRef Google Scholar

    [171] Carrillo S G C, Nash G R, Hayat H, Cryan M J, Klemm M et al. Design of practicable phase-change metadevices for near-infrared absorber and modulator applications. Opt Express 24, 13563-13573 (2016). doi: 10.1364/OE.24.013563

    CrossRef Google Scholar

    [172] Cao T, Wei C W, Simpson R E, Zhang L, Cryan M J. Rapid phase transition of a phase-change metamaterial perfect absorber. Opt Mater Express 3, 1101-1110 (2013). doi: 10.1364/OME.3.001101

    CrossRef Google Scholar

    [173] Cao T, Zhang L, Simpson R E, Cryan M J. Mid-infrared tunable polarization-independent perfect absorber using a phase-change metamaterial. J Opt Soc Am B 30, 1580-1585 (2013).

    Google Scholar

    [174] Zou L F, Cryan M, Klemm M. Phase change material based tunable reflectarray for free-space optical inter/intra chip interconnects. Opt Express 22, 24142-24148 (2014). doi: 10.1364/OE.22.024142

    CrossRef Google Scholar

    [175] Cao T, Wei C W, Mao L B. Numerical study of achiral phase-change metamaterials for ultrafast tuning of giant circular conversion dichroism. Sci Rep 5, 14666 (2015). doi: 10.1038/srep14666

    CrossRef Google Scholar

    [176] Cao T, Zhang L, Simpson R E, Wei C W, Cryan M J. Strongly tunable circular dichroism in gammadion chiral phase-change metamaterials. Opt Express 21, 27841-27851 (2013). doi: 10.1364/OE.21.027841

    CrossRef Google Scholar

    [177] Yin X H, Sch ferling M, Michel A K U, Tittl A, Wuttig M et al. Active Chiral Plasmonics. Nano Lett 15, 4255-4260 (2015). doi: 10.1021/nl5042325

    CrossRef Google Scholar

    [178] Cao T, Li Y, Wei C W, Qiu Y M. Numerical study of tunable enhanced chirality in multilayer stack achiral phase-change metamaterials. Opt Express 25, 9911-9925 (2017). doi: 10.1364/OE.25.009911

    CrossRef Google Scholar

    [179] Cao T, Simpson R E, Cryan M J. Study of tunable negative index metamaterials based on phase-change materials. J Opt Soc Am B 30, 439-444 (2013). doi: 10.1364/JOSAB.30.000439

    CrossRef Google Scholar

    [180] Gholipour B, Zhang J F, MacDonald K F, Hewak D W, Zheludev N I. An all-optical, non-volatile, bidirectional, phase-change meta-switch. Adv Mater 25, 3050-3054 (2013). doi: 10.1002/adma.v25.22

    CrossRef Google Scholar

    [181] Michel A K U, Zalden P, Chigrin D N, Wuttig M, Lindenberg A M et al. Reversible optical switching of infrared antenna resonances with ultrathin phase-change layers using femtosecond laser pulses. ACS Photonics 1, 833-839 (2014). doi: 10.1021/ph500121d

    CrossRef Google Scholar

    [182] Michel A K U, Chigrin D N, Ma T W W, Sch nauer K, Salinga M et al. Using low-loss phase-change materials for mid-infrared antenna resonance tuning. Nano Lett 13, 3470-3475 (2013). doi: 10.1021/nl4006194

    CrossRef Google Scholar

    [183] Li P N, Yang X S, Ma T W W, Hanss J, Lewin M et al. Reversible optical switching of highly confined phonon-polaritons with an ultrathin phase-change material. Nat Mater 15, 870-875 (2016). doi: 10.1038/nmat4649

    CrossRef Google Scholar

    [184] Karvounis A, Gholipour B, MacDonald K F, Zheludev N I. All-dielectric phase-change reconfigurable metasurface. Appl Phys Lett 109, 051103 (2016). doi: 10.1063/1.4959272

    CrossRef Google Scholar

    [185] Chu C H, Tseng M L, Chen J, Wu P C, Chen Y H et al. Active dielectric metasurface based on phase‐change medium. Laser Photonics Rev 10, 986-994 (2016). doi: 10.1002/lpor.201600106

    CrossRef Google Scholar

    [186] Wang Q, Maddock J, Rogers E T F, Roy T, Craig C et al. 1.7 Gbit/in.2 gray-scale continuous-phase-change femtosecond image storage. Appl Phys Lett 104, 121105 (2014). doi: 10.1063/1.4869575

    CrossRef Google Scholar

    [187] Naorem R, Dayal G, Ramakrishna S A, Rajeswaran B, Umarji A M. Thermally switchable metamaterial absorber with a VO2 ground plane. Opt Commun 346, 154-157 (2015). doi: 10.1016/j.optcom.2015.01.075

    CrossRef Google Scholar

    [188] Kocer H, Butun S, Banar B, Wang K, Tongay S et al. Thermal tuning of infrared resonant absorbers based on hybrid gold-VO2 nanostructures. Appl Phys Lett 106, 161104 (2015). doi: 10.1063/1.4918938

    CrossRef Google Scholar

    [189] Savaliya P B, Thomas A, Dua R, Dhawan A. Tunable optical switching in the near-infrared spectral regime by employing plasmonic nanoantennas containing phase change materials. Opt Express 25, 23755-23772 (2017). doi: 10.1364/OE.25.023755

    CrossRef Google Scholar

    [190] Guo P J, Weimer M S, Emery J D, Diroll B T, Chen X Q et al. Conformal coating of a phase change material on ordered plasmonic nanorod arrays for broadband all-optical switching. ACS Nano 11, 693-701 (2017). doi: 10.1021/acsnano.6b07042

    CrossRef Google Scholar

    [191] Hashemi M R M, Yang S H, Wang T Y, Sepúlveda N, Jarrahi M. Electronically-controlled beam-steering through vanadium dioxide metasurfaces. Sci Rep 6, 35439 (2016). doi: 10.1038/srep35439

    CrossRef Google Scholar

    [192] Wang D C, Zhang L C, Gong Y D, Jian L K, Venkatesan T et al. Multiband switchable terahertz quarter-wave plates via phase-change metasurfaces. IEEE Photonics J 8, 5500308 (2016).

    Google Scholar

    [193] Seo M, Kyoung J, Park H, Koo S, Kim H S et al. Active terahertz nanoantennas based on VO2 phase transition. Nano Lett 10, 2064-2068 (2010). doi: 10.1021/nl1002153

    CrossRef Google Scholar

    [194] Driscoll T, Palit S, Qazilbash M M, Brehm M, Keilmann F et al. Dynamic tuning of an infrared hybrid-metamaterial resonance using vanadium dioxide. Appl Phys Lett 93, 024101 (2008). doi: 10.1063/1.2956675

    CrossRef Google Scholar

    [195] Zhu Z H, Evans P G, Haglund R F Jr, Valentine J G. Dynamically reconfigurable metadevice employing nanostructured phase-change materials. Nano Lett 17, 4881-4885 (2017). doi: 10.1021/acs.nanolett.7b01767

    CrossRef Google Scholar

    [196] Collings P J, Hird M. Introduction to Liquid Crystals: Chemistry and Physics (CRC Press, London, 1997).

    Google Scholar

    [197] Minovich A, Neshev D N, Powell D A, Shadrivov I V, Kivshar Y S. Tunable fishnet metamaterials infiltrated by liquid crystals. Appl Phys Lett 96, 193103 (2010). doi: 10.1063/1.3427429

    CrossRef Google Scholar

    [198] Buchnev O, Ou J Y, Kaczmarek M, Zheludev N I, Fedotov V A. Electro-optical control in a plasmonic metamaterial hybridised with a liquid-crystal cell. Opt Express 21, 1633-1638 (2013). doi: 10.1364/OE.21.001633

    CrossRef Google Scholar

    [199] Zhang F L, Zhao Q, Zhang W H, Sun J B, Zhou J et al. Voltage tunable short wire-pair type of metamaterial infiltrated by nematic liquid crystal. Appl Phys Lett 97, 134103 (2010). doi: 10.1063/1.3496034

    CrossRef Google Scholar

    [200] Isić G, Vasić B, Zografopoulos D C, Beccherelli R, Gajić R. Electrically tunable critically coupled terahertz metamaterial absorber based on nematic liquid crystals. Phys Rev Appl 3, 064007 (2015). doi: 10.1103/PhysRevApplied.3.064007

    CrossRef Google Scholar

    [201] Gorkunov M V, Osipov M A. Tunability of wire-grid metamaterial immersed into nematic liquid crystal. J Appl Phys 103, 036101 (2008). doi: 10.1063/1.2837099

    CrossRef Google Scholar

    [202] Liu Z, Huang C Y, Liu H W, Zhang X H, Lee C. Resonance enhancement of terahertz metamaterials by liquid crystals/indium tin oxide interfaces. Opt Express 21, 6519-6525 (2013). doi: 10.1364/OE.21.006519

    CrossRef Google Scholar

    [203] Buchnev O, Podoliak N, Kaczmarek M, Zheludev N I, Fedotov V A. Electrically controlled nanostructured metasurface loaded with liquid crystal: Toward multifunctional photonic switch. Adv Opt Mater 3, 674-679 (2015). doi: 10.1002/adom.v3.5

    CrossRef Google Scholar

    [204] Buchnev O, Wallauer J, Walther M, Kaczmarek M, Zheludev N I et al. Controlling intensity and phase of terahertz radiation with an optically thin liquid crystal-loaded metamaterial. Appl Phys Lett 103, 141904 (2013). doi: 10.1063/1.4823822

    CrossRef Google Scholar

    [205] Zografopoulos D C, Beccherelli R. Tunable terahertz fishnet metamaterials based on thin nematic liquid crystal layers for fast switching. Sci Rep 5, 13137 (2015). doi: 10.1038/srep13137

    CrossRef Google Scholar

    [206] Kowerdziej R, Olifierczuk M, Parka J, Wróbel J. Terahertz characterization of tunable metamaterial based on electrically controlled nematic liquid crystal. Appl Phys Lett 105, 022908 (2014). doi: 10.1063/1.4890850

    CrossRef Google Scholar

    [207] Chang C L, Wang W C, Lin H R, Hsieh F J, Pun Y B et al. Tunable terahertz fishnet metamaterial. Appl Phys Lett 102, 151903 (2013). doi: 10.1063/1.4801648

    CrossRef Google Scholar

    [208] Kwon D H, Wang X D, Bayraktar Z, Weiner B, Werner D H. Near-infrared metamaterial films with reconfigurable transmissive/reflective properties. Opt Lett 33, 545-547 (2008). doi: 10.1364/OL.33.000545

    CrossRef Google Scholar

    [209] Komar A, Fang Z, Bohn J, Sautter J, Decker M et al. Electrically tunable all-dielectric optical metasurfaces based on liquid crystals. Appl Phys Lett 110, 071109 (2017). doi: 10.1063/1.4976504

    CrossRef Google Scholar

    [210] Kowerdziej R, Jaroszewicz L, Olifierczuk M, Parka J. Experimental study on terahertz metamaterial embedded in nematic liquid crystal. Appl Phys Lett 106, 092905 (2015). doi: 10.1063/1.4914032

    CrossRef Google Scholar

    [211] Chen C C, Chiang W F, Tsai M C, Jiang S A, Chang T H et al. Continuously tunable and fast-response terahertz metamaterials using in-plane-switching dual-frequency liquid crystal cells. Opt Lett 40, 2021-2024 (2015). doi: 10.1364/OL.40.002021

    CrossRef Google Scholar

    [212] Kowerdziej R, Olifierczuk M, Salski B, Parka J. Tunable negative index metamaterial employing in-plane switching mode at terahertz frequencies. Liq Cryst 39, 827-831 (2012). doi: 10.1080/02678292.2012.684461

    CrossRef Google Scholar

    [213] Bildik S, Dieter S, Fritzsch C, Menzel W, Jakoby R. Reconfigurable folded reflectarray antenna based upon liquid crystal technology. IEEE Trans Antennas Propag 63, 122-132 (2015). doi: 10.1109/TAP.2014.2367491

    CrossRef Google Scholar

    [214] Liu Y J, Si G Y, Leong E S P, Wang B, Danner A J et al. Optically tunable plasmonic color filters. Appl Phys A 107, 49-54 (2012). doi: 10.1007/s00339-011-6736-y

    CrossRef Google Scholar

    [215] Lewandowski W, Fruhnert M, Mieczkowski J, Rockstuhl C, Górecka E. Dynamically self-assembled silver nanoparticles as a thermally tunable metamaterial. Nat Commun 6, 6590 (2015). doi: 10.1038/ncomms7590

    CrossRef Google Scholar

    [216] Liu L M, Shadrivov I V, Powell D A, Raihan M R, Hattori H T et al. Temperature control of terahertz metamaterials with liquid crystals. IEEE Trans Terahertz Sci Technol 3, 827-831 (2013). doi: 10.1109/TTHZ.2013.2285570

    CrossRef Google Scholar

    [217] Zhao J C, Cheng Y Z, Cheng Z Z. Design of a photo-excited switchable broadband reflective linear polarization conversion metasurface for terahertz waves. IEEE Photonics J 10, 4600210 (2018).

    Google Scholar

    [218] Xu Z C, Gao R M, Ding C F, Wu L, Zhang Y T et al. Photoexited switchable metamaterial absorber at terahertz frequencies. Opt Commun 344, 125-128 (2015). doi: 10.1016/j.optcom.2015.01.051

    CrossRef Google Scholar

    [219] Liu X W, Liu H J, Sun Q B, Huang N. Metamaterial terahertz switch based on split-ring resonator embedded with photoconductive silicon. Appl Opt 54, 3478-3483 (2015). doi: 10.1364/AO.54.003478

    CrossRef Google Scholar

    [220] Zhao X G, Fan K B, Zhang J D, Seren H R, Metcalfe G D et al. Optically tunable metamaterial perfect absorber on highly flexible substrate. Sens Actuators A-Phys 231, 74-80 (2015). doi: 10.1016/j.sna.2015.02.040

    CrossRef Google Scholar

    [221] Shcherbakov M R, Liu S, Zubyuk V V, Vaskin A, Vabishchevich P P et al. Ultrafast all-optical tuning of direct-gap semiconductor metasurfaces. Nat Commun 8, 17 (2017). doi: 10.1038/s41467-017-00019-3

    CrossRef Google Scholar

    [222] Manjappa M, Srivastava Y K, Cong L Q, Al-Naib I, Singh R. Active photoswitching of sharp fano resonances in THz metadevices. Adv Mater 29, 1603355 (2017). doi: 10.1002/adma.v29.3

    CrossRef Google Scholar

    [223] Seren H R, Keiser G R, Cao L Y, Zhang J D, Strikwerda A C et al. Optically Modulated multiband terahertz perfect absorber. Adv Opt Mater 2, 1221-1226 (2014). doi: 10.1002/adom.201400197

    CrossRef Google Scholar

    [224] Kenanakis G, Zhao R, Katsarakis N, Kafesaki M, Soukoulis C M et al. Optically controllable THz chiral metamaterials. Opt Express 22, 12149-12159 (2014). doi: 10.1364/OE.22.012149

    CrossRef Google Scholar

    [225] Cheng Y Z, Gong R Z, Cheng Z Z. A photoexcited broadband switchable metamaterial absorber with polarization-insensitive and wide-angle absorption for terahertz waves. Opt Commun 361, 41-46 (2016). doi: 10.1016/j.optcom.2015.10.031

    CrossRef Google Scholar

    [226] Li Q, Tian Z, Zhang X Q, Singh R, Du L L et al. Active graphene-silicon hybrid diode for terahertz waves. Nat Commun 6, 7082 (2015). doi: 10.1038/ncomms8082

    CrossRef Google Scholar

    [227] Gu J Q, Singh R, Liu X J, Zhang X Q, Ma Y F et al. Active control of electromagnetically induced transparency analogue in terahertz metamaterials. Nat Commun 3, 1151 (2012). doi: 10.1038/ncomms2153

    CrossRef Google Scholar

    [228] Su X Q, Ouyang C M, Xu N N, Tan S Y, Gu J Q et al. Broadband terahertz transparency in a switchable metasurface. IEEE Photonics J 7, 5900108 (2015).

    Google Scholar

    [229] Zhong L, Zhang B, He T, Lv L F, Hou Y B et al. Conjugated polymer based active electric-controlled terahertz device. Appl Phys Lett 108, 103301 (2016). doi: 10.1063/1.4943648

    CrossRef Google Scholar

    [230] Pryce I M, Kelaita Y A, Aydin K, Atwater H A. Compliant metamaterials for resonantly enhanced infrared absorption spectroscopy and refractive index sensing. ACS Nano 5, 8167-8174 (2011). doi: 10.1021/nn202815k

    CrossRef Google Scholar

    [231] Malek S C, Ee H S, Agarwal R. Strain multiplexed metasurface holograms on a stretchable substrate. Nano Lett 17, 3641-3645 (2017). doi: 10.1021/acs.nanolett.7b00807

    CrossRef Google Scholar

    [232] Pryce I M, Aydin K, Kelaita Y A, Briggs R M, Atwater H A. Highly strained compliant optical metamaterials with large frequency tunability. Nano Lett 10, 4222-4227 (2010). doi: 10.1021/nl102684x

    CrossRef Google Scholar

    [233] Li J N, Shah C M, Withayachumnankul W, Ung B S Y, Mitchell A et al. Mechanically tunable terahertz metamaterials. Appl Phys Lett 102, 121101 (2013). doi: 10.1063/1.4773238

    CrossRef Google Scholar

    [234] Cui Y B, Zhou J H, Tamma V A, Park W. Dynamic tuning and symmetry lowering of Fano resonance in plasmonic nanostructure. ACS Nano 6, 2385-2393 (2012). doi: 10.1021/nn204647b

    CrossRef Google Scholar

    [235] Gutruf P, Zou C J, Withayachumnankul W, Bhaskaran M, Sriram S et al. Mechanically tunable dielectric resonator metasurfaces at visible frequencies. ACS nano 10, 133-141 (2016). doi: 10.1021/acsnano.5b05954

    CrossRef Google Scholar

    [236] Yoo D, Johnson T W, Cherukulappurath S, Norris D J, Oh S H. Template-stripped tunable plasmonic devices on stretchable and rollable substrates. ACS Nano 9, 10647-10654 (2015). doi: 10.1021/acsnano.5b05279

    CrossRef Google Scholar

    [237] Kim K, Lee D, Eom S, Lim S. Stretchable metamaterial absorber using liquid metal-filled polydimethylsiloxane (PDMS). Sensors 16, 521 (2016). doi: 10.3390/s16040521

    CrossRef Google Scholar

    [238] Dehghani M, Pakizeh T. Efficient tunability and circuit model of nested-U nanoresonators in optical metasurfaces. J Mod Opt 65, 151-157 (2018). doi: 10.1080/09500340.2017.1382591

    CrossRef Google Scholar

    [239] Nguyen C T C, Katehi L P B, Rebeiz G M. Micromachined devices for wireless communications. Proc IEEE 86, 1756-1768 (1998). doi: 10.1109/5.704281

    CrossRef Google Scholar

    [240] Rebeiz G M, Muldavin J B. Rf mems switches and switch circuits. IEEE Microw Mag 2, 59-71 (2001). doi: 10.1109/6668.969936

    CrossRef Google Scholar

    [241] Brown E R. RF-MEMS switches for reconfigurable integrated circuits. IEEE Trans Microw Theory Tech 46, 1868-1880 (1998). doi: 10.1109/22.734501

    CrossRef Google Scholar

    [242] Nemati A, Ganji B A. UWB monopole antenna with switchable band-notch characteristic using a novel MEMS Afloat. Appl Comput Electrom Soc J 30, 1306-1312 (2015).

    Google Scholar

    [243] Won Jung C, Lee M J, Li G P, De Flaviis F. Reconfigurable scan-beam single-arm spiral antenna integrated with RF-MEMS switches. IEEE Trans Antennas Propag 54, 455-463 (2006). doi: 10.1109/TAP.2005.863407

    CrossRef Google Scholar

    [244] Mak A C K, Rowell C R, Murch R D, Mak C L. Reconfigurable multiband antenna designs for wireless communication devices. IEEE Trans Antennas Propag 55, 1919-1928 (2007). doi: 10.1109/TAP.2007.895634

    CrossRef Google Scholar

    [245] Nikolaou S, Kingsley N D, Ponchak G E, Papapolymerou J, Tentzeris M M. UWB elliptical monopoles with a reconfigurable band notch using MEMS switches actuated without bias lines. IEEE Trans Antennas Propag 57, 2242-2251 (2009). doi: 10.1109/TAP.2009.2024450

    CrossRef Google Scholar

    [246] Erdil E, Topalli K, Unlu M, Civi O A, Akin T. Frequency tunable microstrip patch antenna using RF MEMS technology. IEEE Trans Antennas Propag 55, 1193-1196 (2007). doi: 10.1109/TAP.2007.893426

    CrossRef Google Scholar

    [247] Rebeiz G M, Tan G L, Hayden J S. RF MEMS phase shifters: Design and applications. IEEE Microw Mag 3, 72-81 (2002). doi: 10.1109/MMW.2002.1004054

    CrossRef Google Scholar

    [248] Scheeper P R, Nordstrand B, Gullov J O, Liu B, Clausen T et al. A new measurement microphone based on MEMS technology. J Microelectromech Syst 12, 880-891 (2003). doi: 10.1109/JMEMS.2003.820260

    CrossRef Google Scholar

    [249] Neumann J J Jr, Gabriel K J. CMOS-MEMS membrane for audio-frequency acoustic actuation. Sens Actuators A: Phys 95, 175-182 (2002). doi: 10.1016/S0924-4247(01)00728-2

    CrossRef Google Scholar

    [250] Bryzek J, Roundy S, Bircumshaw B, Chung C, Castellino K et al. Marvelous MEMS. IEEE Circuits Devices 22, 8-28 (2006).

    Google Scholar

    [251] Williams M D, Griffin B A, Reagan T N, Underbrink J R, Sheplak M. An AlN MEMS piezoelectric microphone for aeroacoustic applications. J Microelectromech Syst 21, 270-283 (2012). doi: 10.1109/JMEMS.2011.2176921

    CrossRef Google Scholar

    [252] Ahmadnejad J, Ganji B A, Nemati A. Design, analysis, and modelling of a MEMS capacitive microphone for integration into CMOS circuits. In Proceedings of 2013 IEEE Asia Pacific Conference on Postgraduate Research in Microelectronics and Electronics (PrimeAsia) 186-190 (IEEE, 2013); http://doi.org/10.1109/PrimeAsia.2013.6731202.

    Google Scholar

    [253] Ahmadnejad J, Ganji B A, Nemati A. A mems capacitive microphone modelling for integrated circuits. Int J Eng-Trans C: Aspects 28, 888-895 (2015).

    Google Scholar

    [254] Ekmekci E, Topalli K, Akin T, Turhan-Sayan G. A tunable multi-band metamaterial design using micro-split SRR structures. Opt Express 17, 16046-16058 (2009). doi: 10.1364/OE.17.016046

    CrossRef Google Scholar

    [255] Debogovic T, Perruisseau-Carrier J. Low loss MEMS-reconfigurable 1-bit reflectarray cell with dual-linear polarization. IEEE Trans Antennas Propag 62, 5055-5060 (2014). doi: 10.1109/TAP.2014.2344100

    CrossRef Google Scholar

    [256] Zhang M, Zhang W, Liu A Q, Li F C, Lan C F. Tunable polarization conversion and rotation based on a reconfigurable metasurface. Sci Rep 7, 12068 (2017). doi: 10.1038/s41598-017-11953-z

    CrossRef Google Scholar

    [257] Buchnev O, Podoliak N, Frank T, Kaczmarek M, Jiang L D et al. Controlling stiction in nano-electro-mechanical systems using liquid crystals. ACS Nano 10, 11519-11524 (2016). doi: 10.1021/acsnano.6b07495

    CrossRef Google Scholar

    [258] Isozaki A, Kan T, Takahashi H, Matsumoto K, Shimoyama I. Out-of-plane actuation with a sub-micron initial gap for reconfigurable terahertz micro-electro-mechanical systems metamaterials. Opt Express 23, 26243-26251 (2015). doi: 10.1364/OE.23.026243

    CrossRef Google Scholar

    [259] Stark T, Imboden M, Kaya S, Mertiri A, Chang J et al. MEMS tunable mid-infrared plasmonic spectrometer. ACS Photonics 3, 14-19 (2016).

    Google Scholar

    [260] Chen K, Razinskas G, Feichtner T, Grossmann S, Christiansen S et al. Electromechanically tunable suspended optical nanoantenna. Nano Lett 16, 2680-2685 (2016). doi: 10.1021/acs.nanolett.6b00323

    CrossRef Google Scholar

    [261] Kundu A, Das S, Maity S, Gupta B, Lahiri S K et al. A tunable band-stop filter using a metamaterial structure and MEMS bridges on a silicon substrate. J Micromech Microeng 22, 045004 (2012). doi: 10.1088/0960-1317/22/4/045004

    CrossRef Google Scholar

    [262] Ma F S, Qian Y, Lin Y S, Liu H W, Zhang X H et al. Polarization-sensitive microelectromechanical systems based tunable terahertz metamaterials using three dimensional electric split-ring resonator arrays. Appl Phys Lett 102, 161912 (2013). doi: 10.1063/1.4803048

    CrossRef Google Scholar

    [263] Cong L Q, Pitchappa P, Lee C, Singh R. Active phase transition via loss engineering in a terahertz MEMS metamaterial. Adv Mater 29, 1700733 (2017). doi: 10.1002/adma.v29.26

    CrossRef Google Scholar

    [264] Kadlec C, Skoromets V, Kadlec F, Němec H, Chen H T et al. Electric-field tuning of a planar terahertz metamaterial based on strained SrTiO3 layers. J Phys D: Appl Phys 51, 054001 (2018). doi: 10.1088/1361-6463/aaa315

    CrossRef Google Scholar

    [265] Xu W R, Sonkusale S. Microwave diode switchable metamaterial reflector/absorber. Appl Phys Lett 103, 031902 (2013). doi: 10.1063/1.4813750

    CrossRef Google Scholar

    [266] Zhu B, Feng Y J, Zhao J M, Huang C, Wang Z B et al. Polarization modulation by tunable electromagnetic metamaterial reflector/absorber. Opt Express 18, 23196s (2010).

    Google Scholar

    [267] Burokur S N, Daniel J P, Ratajczak P, De Lustrac A. Tunable bilayered metasurface for frequency reconfigurable directive emissions. Appl Phys Lett 97, 064101 (2010). doi: 10.1063/1.3478214

    CrossRef Google Scholar

    [268] Ma X L, Pan W B, Huang C, Pu M B, Wang Y Q et al. An active metamaterial for polarization manipulating. Adv Opt Mater 2, 945-949 (2014). doi: 10.1002/adom.v2.10

    CrossRef Google Scholar

    [269] Xu H X, Sun S L, Tang S W, Ma S J, He Q et al. Dynamical control on helicity of electromagnetic waves by tunable metasurfaces. Sci Rep 6, 27503 (2016). doi: 10.1038/srep27503

    CrossRef Google Scholar

    [270] Yang H H, Cao X Y, Yang F, Gao J, Xu S H et al. A programmable metasurface with dynamic polarization, scattering and focusing control. Sci Rep 6, 35692 (2016). doi: 10.1038/srep35692

    CrossRef Google Scholar

    [271] Fan Y C, Qiao T, Zhang F L, Fu Q H, Dong J J et al. An electromagnetic modulator based on electrically controllable metamaterial analogue to electromagnetically induced transparency. Sci Rep 7, 40441 (2017). doi: 10.1038/srep40441

    CrossRef Google Scholar

    [272] Tian S C, Liu H X, Li L. Design of 1-bit digital reconfigurable reflective metasurface for beam-scanning. Appl Sci 7, 882 (2017). doi: 10.3390/app7090882

    CrossRef Google Scholar

    [273] Sievenpiper D F, Schaffner J H, Song H J, Loo R Y, Tangonan G. Two-dimensional beam steering using an electrically tunable impedance surface. IEEE Trans Antennas Propag 51, 2713-2722 (2003). doi: 10.1109/TAP.2003.817558

    CrossRef Google Scholar

    [274] Zhao J, Cheng Q, Chen J, Qi M Q, Jiang W X et al. A tunable metamaterial absorber using varactor diodes. New J Phys 15, 043049 (2013). doi: 10.1088/1367-2630/15/4/043049

    CrossRef Google Scholar

    [275] Kasirga T S, Ertas Y N, Bayindir M. Microfluidics for reconfigurable electromagnetic metamaterials. Appl Phys Lett 95, 214102 (2009). doi: 10.1063/1.3268448

    CrossRef Google Scholar

    [276] Kim H K, Lee D, Lim S. A fluidically tunable metasurface absorber for flexible large-scale wireless ethanol sensor applications. Sensors 16, 1246 (2016). doi: 10.3390/s16081246

    CrossRef Google Scholar

    [277] Wang J Q, Liu S C, Guruswamy S, Nahata A. Reconfigurable terahertz metamaterial device with pressure memory. Opt Express 22, 4065-4074 (2014). doi: 10.1364/OE.22.004065

    CrossRef Google Scholar

    [278] Geng Z X, Zhang X, Fan Z Y, Lv X Q, Chen H D. A route to terahertz metamaterial biosensor integrated with microfluidics for liver cancer biomarker testing in early stage. Sci Rep 7, 16378 (2017). doi: 10.1038/s41598-017-16762-y

    CrossRef Google Scholar

    [279] Zhu W M, Song Q H, Yan L B, Zhang W, Wu P C et al. A flat lens with tunable phase gradient by using random access reconfigurable metamaterial. Adv Mater 27, 4739-4743 (2015). doi: 10.1002/adma.v27.32

    CrossRef Google Scholar

    [280] Baldi A, Gonzalez-Silveira M, Palmisano V, Dam B, Griessen R. Destabilization of the Mg-H system through elastic constraints. Phys Rev Lett 102, 226102 (2009). doi: 10.1103/PhysRevLett.102.226102

    CrossRef Google Scholar

    [281] Sterl F, Strohfeldt N, Walter R, Griessen R, Tittl A et al. Magnesium as novel material for active plasmonics in the visible wavelength range. Nano Lett 15, 7949-7955 (2015). doi: 10.1021/acs.nanolett.5b03029

    CrossRef Google Scholar

    [282] Duan X Y, Kamin S, Liu N. Dynamic plasmonic colour display. Nat Commun 8, 14606 (2017). doi: 10.1038/ncomms14606

    CrossRef Google Scholar

    [283] Duan X Y, Kamin S, Sterl F, Giessen H, Liu N. Hydrogen-regulated chiral nanoplasmonics. Nano Lett 16, 1462-1466 (2016). doi: 10.1021/acs.nanolett.5b05105

    CrossRef Google Scholar

    [284] Bi K, Zhou J, Zhao H J, Liu X M, Lan C W. Tunable dual-band negative refractive index in ferrite-based metamaterials. Opt Express 21, 10746-10752 (2013). doi: 10.1364/OE.21.010746

    CrossRef Google Scholar

    [285] Bi K, Guo Y S, Liu X M, Zhao Q, Xiao J H et al. Magnetically tunable Mie resonance-based dielectric metamaterials. Sci Rep 4, 7001 (2014).

    Google Scholar

    [286] Lei M, Feng N Y, Wang Q M, Hao Y N, Huang S G et al. Magnetically tunable metamaterial perfect absorber. J Appl Phys 119, 244504 (2016). doi: 10.1063/1.4954224

    CrossRef Google Scholar

    [287] Wang Q M, Zeng L Y, Lei M, Bi K. Tunable metamaterial bandstop filter based on ferromagnetic resonance. AIP Adv 5, 077145 (2015). doi: 10.1063/1.4927399

    CrossRef Google Scholar

    [288] Du B, Xu Z, Wang J, Xia S. Magnetically tunable ferrite-dielectric left-handed metamaterial. Prog Electromag Res 66, 21-28 (2016). doi: 10.2528/PIERC16042806

    CrossRef Google Scholar

    [289] Bi K, Huang K, Zeng L Y, Zhou M H, Wang Q M et al. Tunable dielectric properties of ferrite-dielectric based metamaterial. PLoS One 10, e0127331 (2015). doi: 10.1371/journal.pone.0127331

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(15)

Tables(1)

Article Metrics

Article views(39036) PDF downloads(10432) Cited by(0)

Access History

Other Articles By Authors

Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint