Feng N, Tang T, Hu L. Repetitive-control-based high-frequency disturbance suppression method in tip-tilt correction[J]. Opto-Electron Eng, 2025, 52(4): 240294. doi: 10.12086/oee.2025.240294
Citation: Feng N, Tang T, Hu L. Repetitive-control-based high-frequency disturbance suppression method in tip-tilt correction[J]. Opto-Electron Eng, 2025, 52(4): 240294. doi: 10.12086/oee.2025.240294

Repetitive-control-based high-frequency disturbance suppression method in tip-tilt correction

    Fund Project: General Program of National Natural Science Foundation of China (62375267)
More Information
  • Disturbance suppression, especially high-frequency disturbance suppression beyond the closed-loop bandwidth, is the core of realizing high-precision stability control for tip-tilt correction systems. Repetitive control has good performance of periodic trajectory tracking and disturbance suppression, which is applied to the stability control of high-precision systems. The high-frequency disturbance suppression problem of the tip-tilt correction system is analyzed in this paper, and the performance of high-frequency disturbance suppression based on repetitive control is summarized. To solve the problems of natural frequency drift and waterbed amplification in traditional repetitive controllers, a comb-like repetitive controller based on Youla parameterization is designed to suppress high-frequency disturbances beyond the closed-loop bandwidth. In order to solve the problem that the integer-order repetitive control is only effective for specific frequency points, especially in most high frequency regions, the controller will fail due to disturbance fluctuations and uncertainty, an all-pass frit-order delay filter is optimized to suppress the high frequency disturbance at any frequency point up to Nyquist frequency in the tip-tilt correction system. Finally, a parallel repetitive control scheme is designed to suppress the vibration of aperiodic structures which is difficult to suppress, and its robust stability and effectiveness are discussed.
  • 加载中
  • [1] Glück M, Pott J U, Sawodny O. Piezo-actuated vibration disturbance mirror for investigating accelerometer-based Tip-Tilt reconstruction in large telescopes[J]. IFAC-PapersOnLine, 2016, 49(21): 361−366. doi: 10.1016/j.ifacol.2016.10.581

    CrossRef Google Scholar

    [2] 黄林海, 凡木文, 周睿, 等. 大口径压电倾斜镜模型辨识与控制[J]. 光电工程, 2018, 45(3): 170704. doi: 10.12086/oee.2018.170704

    CrossRef Google Scholar

    Huang L H, Fan M W, Zhou R, et al. System identification and control for large aperture fast-steering mirror driven by PZT[J]. Opto-Electron Eng, 2018, 45(3): 170704. doi: 10.12086/oee.2018.170704

    CrossRef Google Scholar

    [3] 罗勇, 刘凯凯, 杨帆, 等. 快反镜系统滑模复合分层干扰观测补偿控制[J]. 光电工程, 2023, 50(4): 220330. doi: 10.12086/oee.2023.220330

    CrossRef Google Scholar

    Luo Y, Liu K K, Yang F, et al. Observation and compensation control of sliding mode compound layered interference for the fast steering mirror system[J]. Opto-Electron Eng, 2023, 50(4): 220330. doi: 10.12086/oee.2023.220330

    CrossRef Google Scholar

    [4] 刘鑫, 李新阳, 杜睿. 压电倾斜镜迟滞非线性建模及逆补偿控制[J]. 光电工程, 2020, 47(4): 180654. doi: 10.12086/oee.2020.180654

    CrossRef Google Scholar

    Liu X, Li X Y, Du R. Modeling and inverse compensation control of hysteresis nonlinear characteristics of piezoelectric steering mirror[J]. Opto-Electron Eng, 2020, 47(4): 180654. doi: 10.12086/oee.2020.180654

    CrossRef Google Scholar

    [5] Tumarina M, Ryazanskiy M, Jeong S, et al. Design, fabrication and space suitability tests of wide field of view, ultra-compact, and high resolution telescope for space application[J]. Opt Express, 2018, 26(3): 2390−2399. doi: 10.1364/OE.26.002390

    CrossRef Google Scholar

    [6] Wang X, Su X Q, Liu G Z, et al. Laser beam jitter control of the link in free space optical communication systems[J]. Opt Express, 2021, 29(25): 41582−41599. doi: 10.1364/OE.443411

    CrossRef Google Scholar

    [7] Guesalaga A, Neichel B, O’Neal J, et al. Mitigation of vibrations in adaptive optics by minimization of closed-loop residuals[J]. Opt Express, 2013, 21(9): 10676−10696. doi: 10.1364/OE.21.010676

    CrossRef Google Scholar

    [8] Tang T, Niu S X, Ma J G, et al. A review on control methodologies of disturbance rejections in optical telescope[J]. Opto-Electron Adv, 2019, 2(10): 190011. doi: 10.29026/oea.2019.190011

    CrossRef Google Scholar

    [9] Sanfedino F, Preda V, Pommier-Budinger V, et al. Robust active mirror control based on hybrid sensing for spacecraft line-of-sight stabilization[J]. IEEE Trans Control Syst Technol, 2021, 29(1): 220−235. doi: 10.1109/TCST.2020.2970658

    CrossRef Google Scholar

    [10] 唐涛, 马佳光, 陈洪斌, 等. 光电跟踪系统中精密控制技术研究进展[J]. 光电工程, 2020, 47(10): 200315. doi: 10.12086/oee.2020.200315

    CrossRef Google Scholar

    Tang T, Ma J G, Chen H B, et al. A review on precision control methodologies for optical-electric tracking control system[J]. Opto-Electron Eng, 2020, 47(10): 200315. doi: 10.12086/oee.2020.200315

    CrossRef Google Scholar

    [11] 吴红梅, 王琛, 冯念, 等. 特征扰动频率辨识的自适应倾斜扰动抑制技术[J]. 光电工程, 2023, 50(10): 230177. doi: 10.12086/oee.2023.230177

    CrossRef Google Scholar

    Wu H M, Wang C, Feng N, et al. Adaptive Tip-Tilt disturbance suppression technique for characteristic disturbance frequency identification[J]. Opto-Electron Eng, 2023, 50(10): 230177. doi: 10.12086/oee.2023.230177

    CrossRef Google Scholar

    [12] 阮勇, 徐田荣, 杨涛, 等. 具有延迟特性的倾斜镜系统中速度-位置控制方法[J]. 光电工程, 2020, 47(12): 200006. doi: 10.12086/oee.2020.200006

    CrossRef Google Scholar

    Ruan Y, Xu T R, Yang T, et al. Position-rate control for the time delay control system of Tip-Tilt mirror[J]. Opto-Electron Eng, 2020, 47(12): 200006. doi: 10.12086/oee.2020.200006

    CrossRef Google Scholar

    [13] 周睿, 张强, 廖勇, 等. 混合自适应滤波的光束抖动控制技术研究[J]. 激光与光电子学进展, 2021, 58(13): 1314004. doi: 10.3788/LOP202158.1314004

    CrossRef Google Scholar

    Zhou R, Zhang Q, Liao Y, et al. Research on beam jitter control technology base on hybrid adaptive filter[J]. Laser Optoelectron Prog, 2021, 58(13): 1314004. doi: 10.3788/LOP202158.1314004

    CrossRef Google Scholar

    [14] Wen L, Xu T R, Ruan Y, et al. Disturbance feedforward control of Tip-Tilt mirror with gyro measuring for large-amplitude vibration rejection[J]. IEEE Sens J, 2022, 22(16): 16351−16358. doi: 10.1109/JSEN.2022.3190134

    CrossRef Google Scholar

    [15] 王玉, 边启慧, 廖军, 等. 惯性稳定万向架中基于SBG惯导的捷联控制技术[J]. 光电工程, 2023, 50(5): 220238. doi: 10.12086/oee.2023.220238

    CrossRef Google Scholar

    Wang Y, Bian Q H, Liao J, et al. Strapdown inertial stabilization technology based on SBG inertial navigation in inertial stabilization gimbal[J]. Opto-Electron Eng, 2023, 50(5): 220238. doi: 10.12086/oee.2023.220238

    CrossRef Google Scholar

    [16] Fan Y F, Tan U X. Design of a feedforward-feedback controller for a piezoelectric-driven mechanism to achieve high-frequency nonperiodic motion tracking[J]. IEEE/ASME Trans Mechatron, 2019, 24(2): 853−862. doi: 10.1109/TMECH.2019.2899069

    CrossRef Google Scholar

    [17] 徐田荣, 阮勇, 赵志强, 等. 基于误差的观测器在光电跟踪系统中的应用(英文)[J]. 光电工程, 2020, 47(11): 190713. doi: 10.12086/oee.2020.190713

    CrossRef Google Scholar

    Xu T R, Ruan Y, Zhao Z Q, et al. Error-based observer control of an optic-electro tracking control system[J]. Opto-Electron Eng, 2020, 47(11): 190713. doi: 10.12086/oee.2020.190713

    CrossRef Google Scholar

    [18] Mooren N, Witvoet G, Oomen T. Gaussian process repetitive control: Beyond periodic internal models through kernels[J]. Automatica, 2022, 140: 110273. doi: 10.1016/j.automatica.2022.110273

    CrossRef Google Scholar

    [19] 牛帅旭, 蒋晶, 唐涛, 等. 望远镜中扰动抑制的Youla控制器优化设计[J]. 光电工程, 2020, 47(9): 190547. doi: 10.12086/oee.2020.190547

    CrossRef Google Scholar

    Niu S X, Jiang J, Tang T, et al. Optimal design of Youla controller for vibration rejection in telescopes[J]. Opto-Electron Eng, 2020, 47(9): 190547. doi: 10.12086/oee.2020.190547

    CrossRef Google Scholar

    [20] Zou Z X, Zhou K L, Wang Z, et al. Fractional-order repetitive control of programmable AC power sources[J]. IET Power Electron, 2014, 7(2): 431−438. doi: 10.1049/iet-pel.2013.0429

    CrossRef Google Scholar

    [21] Liu T Q, Wang D W. Parallel structure fractional repetitive control for PWM inverters[J]. IEEE Trans Ind Electron, 2015, 62(8): 5045−5054. doi: 10.1109/TIE.2015.2402117

    CrossRef Google Scholar

    [22] Feng Z, Ming M, Ling J, et al. Fractional delay filter based repetitive control for precision tracking: design and application to a piezoelectric nanopositioning stage[J]. Mech Syst Signal Process, 2022, 164: 108249. doi: 10.1016/j.ymssp.2021.108249

    CrossRef Google Scholar

    [23] Feng N, Ruan Y, Xu T R, et al. Enhanced observer-based repetitive control for Tip-Tilt disturbance rejections beyond control bandwidth in optical-stabilized systems[J]. IEEE Photonics J, 2023, 15(1): 7800207. doi: 10.1109/JPHOT.2023.3240694

    CrossRef Google Scholar

    [24] Li L L, Aphale S S, Zhu L M. Enhanced odd-harmonic repetitive control of nanopositioning stages using spectrum-selection filtering scheme for high-speed raster scanning[J]. IEEE Trans Autom Sci Eng, 2021, 18(3): 1087−1096. doi: 10.1109/TASE.2020.2995444

    CrossRef Google Scholar

    [25] Zhang Q F, Guo H H, Liu Y C, et al. Robust plug-in repetitive control for speed smoothness of cascaded-PI PMSM drive[J]. Mech Syst Signal Process, 2022, 163: 108090. doi: 10.1016/j.ymssp.2021.108090

    CrossRef Google Scholar

    [26] Li L L, Huang W W, Wang X Y, et al. Dual-notch-based repetitive control for tracking lissajous scan trajectories with piezo-actuated nanoscanners[J]. IEEE Trans Instrum Meas, 2022, 71: 4503612. doi: 10.1109/TIM.2022.3169561

    CrossRef Google Scholar

    [27] Nie K, Xue W C, Zhang C, et al. Disturbance observer-based repetitive control with application to optoelectronic precision positioning system[J]. J Franklin Inst, 2021, 358(16): 8443−8469. doi: 10.1016/j.jfranklin.2021.08.042

    CrossRef Google Scholar

    [28] Tang T, Niu S X, Yang T, et al. Vibration rejection of Tip-Tilt mirror using improved repetitive control[J]. Mech Syst Signal Process, 2019, 116: 432−442. doi: 10.1016/j.ymssp.2018.06.060

    CrossRef Google Scholar

    [29] Li L L, Gu G Y, Zhu L M. Fractional repetitive control of nanopositioning stages for tracking high-frequency periodic inputs with nonsynchronized sampling[J]. Rev Sci Instrum, 2019, 90(5): 055108. doi: 10.1063/1.5088673

    CrossRef Google Scholar

    [30] Zhou K L, Tang C, Chen Y X, et al. A generic multi-frequency repetitive control scheme for power converters[J]. IEEE Trans Ind Electron, 2023, 70(12): 12680−12688. doi: 10.1109/TIE.2023.3239855

    CrossRef Google Scholar

    [31] Cui P L, Zhang G X, Liu Z Y, et al. A second-order dual mode repetitive control for magnetically suspended rotor[J]. IEEE Trans Ind Electron, 2020, 67(6): 4946−4956. doi: 10.1109/TIE.2019.2927184

    CrossRef Google Scholar

    [32] Li L L, Chen Z Z, Aphale S S, et al. Fractional repetitive control of nanopositioning stages for high-speed scanning using low-pass FIR variable fractional delay filter[J]. IEEE/ASME Trans Mechatron, 2020, 25(2): 547−557. doi: 10.1109/TMECH.2020.2969222

    CrossRef Google Scholar

    [33] Chen D, Zhang J M, Qian Z M. An improved repetitive control scheme for grid-connected inverter with frequency-adaptive capability[J]. IEEE Trans Ind Electron, 2013, 60(2): 814−823. doi: 10.1109/TIE.2012.2205364

    CrossRef Google Scholar

    [34] Li L L, Fleming A J, Yong Y K, et al. High performance raster scanning of atomic force microscopy using Model-free Repetitive Control[J]. Mech Syst Signal Process, 2022, 173: 109027. doi: 10.1016/j.ymssp.2022.109027

    CrossRef Google Scholar

    [35] Feng N, Ruan Y, Tang T. Youla parameterization-based fractional repetitive control of arbitrary frequency disturbance rejections for line-of-sight stabilization[J]. IEEE Trans Ind Electron, 2024, 71(8): 9460−9469. doi: 10.1109/TIE.2023.3317840

    CrossRef Google Scholar

    [36] Ye J, Liu L G, Xu J B, et al. Frequency adaptive proportional-repetitive control for grid-connected inverters[J]. IEEE Trans Ind Electron, 2021, 68(9): 7965−7974. doi: 10.1109/TIE.2020.3016247

    CrossRef Google Scholar

    [37] Chen S N, Zhao Q S, Ye Y Q, et al. Using IIR filter in fractional order phase lead compensation PIMR-RC for grid-tied inverters[J]. IEEE Trans Ind Electron, 2023, 70(9): 9399−9409. doi: 10.1109/TIE.2022.3212433

    CrossRef Google Scholar

    [38] Blanken L, Bevers P, Koekebakker S, et al. Sequential multiperiod repetitive control design with application to industrial wide-format printing[J]. IEEE/ASME Trans Mechatron, 2020, 25(2): 770−778. doi: 10.1109/TMECH.2020.2967305

    CrossRef Google Scholar

    [39] Feng N, Ruan Y, Bian Q H, et al. High-frequency multiperiod wideband vibration rejections of piezoelectric tip-tilt mirror using parallel odd-harmonic repetitive control[J]. Mech Syst Signal Process, 2025, 224: 111958. doi: 10.1016/j.ymssp.2024.111958

    CrossRef Google Scholar

    [40] Chen Y X, Zhou K L, Tang C, et al. Fractional-order multiperiodic odd-harmonic repetitive control of programmable AC power sources[J]. IEEE Trans Power Electron, 2022, 37(7): 7751−7758. doi: 10.1109/TPEL.2022.3147062

    CrossRef Google Scholar

  • In optical telescope systems, the control accuracy with tip-tilt correction systems as a fine tracking link is improved to the level of micro radian or even sub-micro radian. Disturbance suppression, especially high-frequency disturbance suppression outside the closed-loop bandwidth, is the key to achieving high precision stability control of tip-tilt correction systems, so as to approach the diffraction limit of the telescope system. Repetitive control has good performance of periodic trajectory tracking and disturbance suppression and is widely applied to improve the control performance of high-precision control systems, such as nanopositioning stages, power inventers, and hard disk drive systems. Therefore, repetitive control is a promising algorithm for high-frequency disturbance suppression. Firstly, this paper analyzes the problem of high-frequency disturbance suppression of tip-tilt correction systems and summarizes the performance of high-frequency interference suppression based on repetitive control. To solve the problem of natural frequency drift and waterbed amplification of traditional repetitive controllers, a comb-like repetitive controller based on Youla parameterization is designed to suppress high-frequency interference outside the closed-loop bandwidth. In the optimal design of the controller, time delays are compensated by the delay characteristic of the repetitive controller to improve the stability of the closed-loop system in suppressing high-frequency disturbance. In addition, in order to solve the problem that the integer-order repetitive controller is only effective for certain frequency points, especially in most high frequency regions, the controller fails due to interference fluctuations and uncertainties, an all-pass fractional delay filter is optimized, which can suppress high-frequency disturbance at any frequency point up to the Nyquist frequency in the tip-tilt correction system. An additional delay compensation factor is designed to preserve the notch characteristic of the repetitive controller in high-frequency domains and improve the system's stability. Finally, a parallel repetitive control scheme is designed for the non-periodic structure vibration which is difficult to suppress, and its robust stability and effectiveness are discussed. A series of experiments were designed to suppress a single peak disturbance, and the results show that repetitive control suppresses any frequency disturbance up to the Nyquist frequency. Furthermore, the experimental results of multiple periodic and aperiodic disturbance suppression prove that the repetitive controller is superior in dealing with multiple high-frequency disturbances beyond the closed-loop bandwidth. In general, these proposed repetitive controllers have good performance in improving the high-frequency disturbance suppression ability of the tip-tilt correction system, and these algorithms are also suitable for other high-precision control systems in the future.

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(17)

Article Metrics

Article views() PDF downloads() Cited by()

Access History

Other Articles By Authors

Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint