Citation: | Jin Z R, Song J R, Wang C, et al. Low temperature focal surface presetting technology for light and small infrared camera[J]. Opto-Electron Eng, 2025, 52(4): 240293. doi: 10.12086/oee.2025.240293 |
[1] | 曾勇强, 张凤芹. 空间轻小型相机结构总体技术国内外发展情况研究[C]//中国宇航学会空间遥感专业委员会、中国遥感应用协会红外遥感专业委员会2009年学术交流会, 2009, 341−349. Zeng Y Q, Zhang F Q. Research on development of domestic and foreign general technology of space lightweight camera structure [C]//Academic Exchange Conference of the Infrared Remote Sensing Committee of the Chinese Society for Remote Sensing Applications and the Space Remote Sensing Committee of the Chinese Society of Astronautics, 2009, 341−349. |
[2] | 姜海滨, 罗世魁, 曹东晶, 等. “高分二号”卫星轻小型高分辨率相机技术[J]. 航天返回与遥感, 2015, 36(4): 25−33. doi: 10.3969/j.issn.1009-8518.2015.04.004 Jiang H B, Luo S K, Cao D J, et al. Technology of high-density and high-resolution camera of GF-2 satellite[J]. Spacecr Recov Remote Sens, 2015, 36(4): 25−33. doi: 10.3969/j.issn.1009-8518.2015.04.004 |
[3] | 李福东. 小型星载红外相机的研制[J]. 航天返回与遥感, 2004, 25(1): 21−25. doi: 10.3969/j.issn.1009-8518.2004.01.005 Li F D. Research and development of infrared camera onboard minisatellites[J]. Spacecr Recov Remote Sens, 2004, 25(1): 21−25. doi: 10.3969/j.issn.1009-8518.2004.01.005 |
[4] | 洪裕珍, 任国强, 孙健. 离焦模糊图像清晰度评价函数的分析与改进[J]. 光学 精密工程, 2014, 22(12): 3401−3408. doi: 10.3788/OPE.20142212.3401 Hong Y Z, Ren G Q, Sun J. Analysis and improvement on sharpness evaluation function of defocused image[J]. Opt Precis Eng, 2014, 22(12): 3401−3408. doi: 10.3788/OPE.20142212.3401 |
[5] | 原育凯, 程仕东, 裴云天. 光学系统离焦对自动调焦评价函数的影响[J]. 光电工程, 2005, 32(12): 51−54,58. doi: 10.3969/j.issn.1003-501X.2005.12.013 Yuan Y K, Cheng S D, Pei Y T. Influence of defocus on automatic focusing evaluation function[J]. Opto-Electron Eng, 2005, 32(12): 51−54,58. doi: 10.3969/j.issn.1003-501X.2005.12.013 |
[6] | 朱鹤, 梁伟, 高晓东. 航空相机光电自准直检调焦系统[J]. 光电工程, 2011, 38(3): 35−39. doi: 10.3969/j.issn.1003-501X.2011.03.007 Zhu H, Liang W, Gao X D. Autofocusing system with opto-electronic auto-collimation method for aerial camera[J]. Opto-Electron Eng, 2011, 38(3): 35−39. doi: 10.3969/j.issn.1003-501X.2011.03.007 |
[7] | 张发强, 樊祥, 孔辉, 等. 温度对红外光学系统的影响分析及消热差设计[J]. 激光与红外, 2015, 45(7): 854−860. doi: 10.3969/j.issn.1001-5078.2015.07.026 Zhang F Q, Fan X, Kong H, et al. Influence of temperature on infrared optical system and athermal design[J]. Laser Infrared, 2015, 45(7): 854−860. doi: 10.3969/j.issn.1001-5078.2015.07.026 |
[8] | 王远方舟. 温度自适应红外光学系统设计及测试方法研究[D]. 长春: 长春理工大学, 2013. Wang Y F Z. A study of design and testing method for temperature adaption IR lens[D]. Changchun: Changchun University of Science and Technology, 2013. |
[9] | Schreibman M, Young P. Design of Infrared Astronomical Satellite (IRAS) primary[J]. Opt Eng, 1981, 20(2): 202190. doi: 10.1117/12.7972689 |
[10] | 沈忙作, 马文礼, 廖胜. 低温红外光学系统: 96233926.1[P]. 1996-10-23. https://cprs.patentstar.com.cn/Search/Detail?ANE=9ECG9HDH9DGCBIHA8BEA9FAF9GED9IBG. Shen M Z, Ma W L, Liao S. Low-temp. infrared optical system: 96233926.1[P]. 1996-10-23. https://cprs.patentstar.com.cn/Search/Detail?ANE=9ECG9HDH9DGCBIHA8BEA9FAF9GED9IBG. |
[11] | 杨佳文, 黄巧林, 韩友民. Zernike多项式在拟合光学表面面形中的应用及仿真[J]. 航天返回与遥感, 2010, 31(5): 49−55. doi: 10.3969/j.issn.1009-8518.2010.05.009 Yang J W, Huang Q L, Han Y M. Application and simulation in fitting optical surface with Zernike polynomial[J]. Spacecr Recov Remote Sens, 2010, 31(5): 49−55. doi: 10.3969/j.issn.1009-8518.2010.05.009 |
[12] | 李其锴. Zernike多项式拟合用于低温光学镜头热集成分析[J]. 航天返回与遥感, 2010, 31(4): 45−50. doi: 10.3969/j.issn.1009-8518.2010.04.008 Li Q K. Zernike polynomials fitting in cryogenic optical thermal integration analysis[J]. Spacecr Recov Remote Sens, 2010, 31(4): 45−50. doi: 10.3969/j.issn.1009-8518.2010.04.008 |
[13] | 倪磊, 任栖锋, 廖胜. 红外材料低温折射率测定: 不确定度分析[J]. 光电工程, 2010, 37(10): 77−82. doi: 10.3969/j.issn.1003-501X.2010.10.013 Ni L, Ren Q F, Liao S. Measurement of cryogenic refractive index of IR materials: uncertainty analysis[J]. Opto-Electron Eng, 2010, 37(10): 77−82. doi: 10.3969/j.issn.1003-501X.2010.10.013 |
[14] | 余怀之. 红外光学材料[M]. 2版. 北京: 国防工业出版社, 2015. Yu H Z. Infrared Optical Material[M]. 2nd ed. Beijing: National Defense Industry Press, 2015. |
[15] | 王之江. 光学设计理论基础[M]. 2版. 北京: 科学出版社, 1985. Wang Z J. Theoretical Foundations of Optical Design[M]. 2nd ed. Beijing: Science Press, 1985. |
[16] | 宋俊儒, 邢辉, 裴景洋, 等. 低温镜头能量集中度测试及其误差分析[J]. 红外与激光工程, 2019, 48(7): 0717007. doi: 10.3788/IRLA201948.0717007 Song J R, Xing H, Pei J Y, et al. Measurement and error analysis of encircled energy of cryogenic lens[J]. Infrared Laser Eng, 2019, 48(7): 0717007. doi: 10.3788/IRLA201948.0717007 |
This study addresses the challenges of defocusing in lightweight, compact infrared cameras under low-temperature conditions, proposing a novel methodology for accurately presetting the focal plane at room temperature. Traditional solutions, such as mechanical refocusing mechanisms or strict material-based thermalization, often compromise weight constraints or incur high costs, making them unsuitable for miniaturized satellite payloads. The authors introduce a low-cost, high-precision approach combining opto-mechanical co-simulation, low-temperature interferometry, and linear displacement measurement to quantify defocusing effects and enable focal plane presetting.
The research focuses on an 181 mm aperture lightweight infrared camera with a 535 mm focal length operating at 220 K (−50 °C). Key factors contributing to low-temperature defocusing are analyzed, including structural contraction of aluminum alloy components (axial shrinkage of 0.23 mm in the front barrel), curvature radius variations in primary/secondary mirrors (ΔR = −0.12 mm and +0.04 mm, respectively), and refractive index changes in Si/Ge corrective lenses. Through finite element analysis and Zernike polynomial surface fitting, these factors are integrated into optical simulations, predicting a 0.38 mm back-focal-length (BFL) shift.
Experimental validation employs a ZYGO interferometer (3.39 μm wavelength) with a customized cryogenic test setup. The system measures wavefront changes under vacuum conditions, utilizing a reference spherical mirror mounted on a high-precision 5-axis stage. Results confirm a 0.396 mm focal shift from room temperature to −50 °C, demonstrating excellent agreement with simulations (deviation: 0.016 mm < half the 0.07 mm focal depth). The methodology achieves micron-level accuracy (<0.03 mm), validated through MTF testing of a pre-focused camera under simulated space conditions.
Two critical innovations are demonstrated. 1) Focal shift measurement: leveraging power term sensitivity in wavefront interferometry to detect defocusing, combined with submicron displacement tracking, enables direct quantification of thermal-induced focal shifts. 2) Presetting protocol: room-temperature focal positioning compensates for predicted low-temperature shifts, achieving MTF equivalence (0.13 at Nyquist frequency) between ambient and cryogenic environments without mechanical refocusing.
The technology successfully resolves the inherent conflict between miniaturization requirements and thermal stability in spaceborne infrared optics. Experimental verification confirms that the focal position preset error remains within one focal depth (±0.07 mm), meeting stringent imaging performance criteria. This approach eliminates complex cryogenic actuators while accommodating material mismatch in compact designs, offering broad applicability for temperature-sensitive optical systems in lightweight satellite platforms. Future work may extend the methodology to multi-spectral systems and optimize parameter weighting algorithms for improved prediction accuracy.
Structure model of light and small infrared camera
Optical system model
Mirror thermal deformation surface simulation flow
Thermal deformation simulation analysis of primary mirror
Simulation analysis of thermal deformation of the secondary mirror
Thermal deformation simulation analysis of front mirror tube
Optical system MTF value at room temperature
Optical system MTF value after low temperature defocusing
Optical system MTF value after room temperature focusing
The optical system detects the optical path at low temperature
Construction of beam expanding system
The low temperature wavefront of the optical system
Fine-tuned collimation of standard spherical rear system wavefront
Optical system fixed focus test at room temperature
MTF overfocus curve at room temperature
Low temperature imaging optical path
Schematic diagram of camera low temperature test
Vacuum low temperature overfocus curve