• 摘要

    超表面可以在亚波长尺度上对光波的偏振、振幅、频率、相位等基本参量进行精确调控。基于此背景,本文提出并实验验证了一种融合空间频率复用和近远场复用的多功能超表面图像显示技术。其中,近远场复用是利用纳米结构的转角简并性将超表面几何相位调控与光波强度调控相融合,基于模拟退火算法实现近场灰度图像与远场全息图像的独立编码;空间频率复用是将两幅图像的不同空间频率成分叠加作为远场全息图像,可以在不同观察位置分别接收到不同的空间频率信息,对应高频图像和低频图像。实验结果表明,通过优化超表面可以同时在不同工作距离实现三幅独立图像(灰度图像、高频图像及低频图像)的显示,这提升了超表面的信息存储容量。本工作将为超表面多功能复用及其在光学加密、光学防伪等领域的应用提供新思路。

    关键词

    Abstract

    Metasurface can precisely modulate the fundamental properties such as polarization, amplitude, frequency, and phase of optical waves at the subwavelength scale. Based on this background, we propose and experimentally verify a multifunctional metasurface image display technology enabled by merging spatial frequency multiplexing and near- and far-field multiplexing. In near- and far-field multiplexing, the orientation degeneracy of nanostructures is introduced to combine geometric phase modulation and light intensity modulation, which leads to independent coding of near-field grayscale image and far-field holographic image displays by using simulated annealing algorithm. In spatial frequency multiplexing, different spatial frequency components of two images are added together to generate a hybrid image for hologram design. Since people receive different spatial frequency parts when the observation position changes, both high-frequency and low-frequency images can be easily distinguished. In our experiment, three independent images (a grayscale image, a high-frequency image and a low-frequency image) can be displayed simultaneously at different distances, which explains that our multifunctional metasurface has enhanced information storage capacity. This work provides a new path for multifunctional metasurface design, and possesses broad applications in optical encryption, optical anti-counterfeiting, and many other related fields.

    Keywords

  • 参考文献

    [1]

    Yu N F, Genevet P, Kats M A, et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction[J]. Science, 2011, 334(6054): 333−337.

    DOI: 10.1126/science.1210713

    [2]

    Zhang Y Z, Lin P C, Huo P C, et al. Dielectric metasurface for synchronously spiral phase contrast and bright-field imaging[J]. Nano Lett, 2023, 23(7): 2991−2997.

    DOI: 10.1021/acs.nanolett.3c00388

    [3]

    Gao H, Wang Y X, Fan X H, et al. Dynamic 3D meta-holography in visible range with large frame number and high frame rate[J]. Sci Adv, 2020, 6(28): eaba8595.

    DOI: 10.1126/sciadv.aba8595

    [4]

    Shi T, Deng Z L, Geng G Z, et al. Planar chiral metasurfaces with maximal and tunable chiroptical response driven by bound states in the continuum[J]. Nat Commun, 2022, 13(1): 4111.

    DOI: 10.1038/s41467-022-31877-1

    展开
  • 期刊类型引用(0)

    其他类型引用(1)

  • 版权信息

    版权属于中国科学院光电技术研究所,但文章内容可以在本网站免费下载,以及免费用于学习和科研工作
  • 关于本文

    DOI: 10.12086/oee.2023.230153
    引用本文
    Citation:
    周宇翀, 丁玮珺, 李子乐, 刘宏超, 付娆, 戴琦, 郑国兴. 融合空频复用和近远场复用的多功能超表面图像显示[J]. 光电工程, 2023, 50(8): 230153. DOI: 10.12086/oee.2023.230153
    Citation:
    Zhou Yuchong, Ding Weijun, Li Zile, Liu Hongchao, Fu Rao, Dai Qi, Zheng Guoxing. Multifunctional metasurface image display enabled by merging spatial frequency multiplexing and near- and far-field multiplexing. Opto-Electronic Engineering 50, 230153 (2023). DOI: 10.12086/oee.2023.230153
    导出引用
    出版历程
    • 收稿日期 2023-06-28
    • 修回日期 2023-08-27
    • 录用日期 2023-08-27
    • 刊出日期 2023-09-26
    文章计量
    访问数(4692) PDF下载数(760)
    分享:
[1]

Yu N F, Genevet P, Kats M A, et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction[J]. Science, 2011, 334(6054): 333−337.

DOI: 10.1126/science.1210713

[2]

Zhang Y Z, Lin P C, Huo P C, et al. Dielectric metasurface for synchronously spiral phase contrast and bright-field imaging[J]. Nano Lett, 2023, 23(7): 2991−2997.

DOI: 10.1021/acs.nanolett.3c00388

[3]

Gao H, Wang Y X, Fan X H, et al. Dynamic 3D meta-holography in visible range with large frame number and high frame rate[J]. Sci Adv, 2020, 6(28): eaba8595.

DOI: 10.1126/sciadv.aba8595

[4]

Shi T, Deng Z L, Geng G Z, et al. Planar chiral metasurfaces with maximal and tunable chiroptical response driven by bound states in the continuum[J]. Nat Commun, 2022, 13(1): 4111.

DOI: 10.1038/s41467-022-31877-1

[5]

Wang D Y, Liu F F, Liu T, et al. Efficient generation of complex vectorial optical fields with metasurfaces[J]. Light Sci Appl, 2021, 10(1): 67.

DOI: 10.1038/s41377-021-00504-x

[6]

Yu B B, Wen J, Chen L, et al. Polarization-independent highly efficient generation of Airy optical beams with dielectric metasurfaces[J]. Photonics Res, 2020, 8(7): 1148−1154.

DOI: 10.1364/PRJ.390202

[7]

Xu Z T, Huang L L, Li X W, et al. Quantitatively correlated amplitude holography based on photon sieves[J]. Adv Opt Mater, 2020, 8(2): 1901169.

DOI: 10.1002/adom.201901169

[8]

Huang K, Deng J, Leong H S, et al. Ultraviolet metasurfaces of ≈80% efficiency with antiferromagnetic resonances for optical vectorial anti‐counterfeiting[J]. Laser Photonics Rev, 2019, 13(5): 1800289.

DOI: 10.1002/lpor.201800289

[9]

Zheng G X, Mühlenbernd H, Kenney M, et al. Metasurface holograms reaching 80% efficiency[J]. Nat Nanotechnol, 2015, 10(4): 308−312.

DOI: 10.1038/nnano.2015.2

[10]

Fu R, Chen K X, Li Z L, et al. Metasurface-based nanoprinting: principle, design and advances[J]. Opto-Electron Sci, 2022, 1(10): 220011.

DOI: 10.29026/oes.2022.220011

[11]

Wang L, Kruk S, Tang H Z, et al. Grayscale transparent metasurface holograms[J]. Optica, 2016, 3(12): 1504−1505.

DOI: 10.1364/OPTICA.3.001504

[12]

Li Z L, Kim I, Zhang L, et al. Dielectric meta-holograms enabled with dual magnetic resonances in visible light[J]. ACS Nano, 2017, 11(9): 9382−9389.

DOI: 10.1021/acsnano.7b04868

[13]

Tan S J, Zhang L, Zhu D, et al. Plasmonic color palettes for photorealistic printing with aluminum nanostructures[J]. Nano Lett, 2014, 14(7): 4023−4029.

DOI: 10.1021/nl501460x

[14]

Sun S, Zhou Z X, Zhang C, et al. All-dielectric full-color printing with TiO2 metasurfaces[J]. ACS Nano, 2017, 11(5): 4445−4452.

DOI: 10.1021/acsnano.7b00415

[15]

Gao B F, Ren M X, Wu W, et al. Lithium niobate metasurfaces[J]. Laser Photonics Rev, 2019, 13(5): 1800312.

DOI: 10.1002/lpor.201800312

[16]

Yue F Y, Zhang C M, Zang X F, et al. High-resolution grayscale image hidden in a laser beam[J]. Light Sci Appl, 2018, 7: 17129.

DOI: 10.1038/lsa.2017.129

[17]

Dai Q, Deng L G, Deng J, et al. Ultracompact, high-resolution and continuous grayscale image display based on resonant dielectric metasurfaces[J]. Opt Express, 2019, 27(20): 27927−27935.

DOI: 10.1364/OE.27.027927

[18]

许可,王星儿,范旭浩,等. 超表面全息术:从概念到实现[J]. 光电工程, 2022, 49(10): 220183.

DOI: 10.12086/oee.2022.220183

Xu K, Wang X E, Fan X H, et al. Meta-holography: from concept to realization[J]. Opto-Electron Eng, 2022, 49(10): 220183.

DOI: 10.12086/oee.2022.220183

[19]

Chen W T, Zhu A Y, Sanjeev V, et al. A broadband achromatic metalens for focusing and imaging in the visible[J]. Nat Nanotechnol, 2018, 13(3): 220−226.

DOI: 10.1038/s41565-017-0034-6

[20]

Arbabi A, Horie Y, Ball A J, et al. Subwavelength-thick lenses with high numerical apertures and large efficiency based on high-contrast transmitarrays[J]. Nat Commun, 2015, 6: 7069.

DOI: 10.1038/ncomms8069

[21]

Pahlevaninezhad H, Khorasaninejad M, Huang Y W, et al. Nano-optic endoscope for high-resolution optical coherence tomography in vivo[J]. Nat Photonics, 2018, 12(9): 540−547.

DOI: 10.1038/s41566-018-0224-2

[22]

Shrestha S, Overvig A C, Lu M, et al. Broadband achromatic dielectric metalenses[J]. Light Sci Appl, 2018, 7: 85.

DOI: 10.1038/s41377-018-0078-x

[23]

Khorasaninejad M, Chen W T, Devlin R C, et al. Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging[J]. Science, 2016, 352(6290): 1190−1194.

DOI: 10.1126/science.aaf6644

[24]

Zhu Y C, Chen X L, Yuan W Z, et al. A waveguide metasurface based quasi-far-field transverse-electric superlens[J]. Opto-Electron Adv, 2021, 4(10): 210013.

DOI: 10.29026/oea.2021.210013

[25]

Zheng G X, Liu G G, Kenney M G, et al. Ultracompact high-efficiency polarising beam splitter based on silicon nanobrick arrays[J]. Opt Express, 2016, 24(6): 6749−6757.

DOI: 10.1364/OE.24.006749

[26]

Li Z L, Zheng G X, He P A, et al. All-silicon nanorod-based Dammann gratings[J]. Opt Lett, 2015, 40(18): 4285−4288.

DOI: 10.1364/OL.40.004285

[27]

Wan C W, Yang R, Shi Y Y, et al. Visible-frequency meta-gratings for light steering, beam splitting and absorption tunable functionality[J]. Opt Express, 2019, 27(26): 37318−37326.

DOI: 10.1364/OE.27.037318

[28]

Shen Z C, Zhao F, Jin C Q, et al. Monocular metasurface camera for passive single-shot 4D imaging[J]. Nat Commun, 2023, 14(1): 1035.

DOI: 10.1038/s41467-023-36812-6

[29]

Arbabi A, Horie Y, Bagheri M, et al. Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission[J]. Nat Nanotechnol, 2015, 10(11): 937−943.

DOI: 10.1038/nnano.2015.186

[30]

Yue F Y, Wen D D, Xin J T, et al. Vector vortex beam generation with a single plasmonic metasurface[J]. ACS Photonics, 2016, 3(9): 1558−1563.

DOI: 10.1021/acsphotonics.6b00392

[31]

Tittl A, Leitis A, Liu M K, et al. Imaging-based molecular barcoding with pixelated dielectric metasurfaces[J]. Science, 2018, 360(6393): 1105−1109.

DOI: 10.1126/science.aas9768

[32]

Yesilkoy F, Arvelo E R, Jahani Y, et al. Ultrasensitive hyperspectral imaging and biodetection enabled by dielectric metasurfaces[J]. Nat Photonics, 2019, 13(6): 390−396.

DOI: 10.1038/s41566-019-0394-6

[33]

Bao Y J, Yu Y, Xu H F, et al. Coherent pixel design of metasurfaces for multidimensional optical control of multiple printing-image switching and encoding[J]. Adv Funct Mater, 2018, 28(51): 1805306.

DOI: 10.1002/adfm.201805306

[34]

Balthasar Mueller J P, Rubin N A, Devlin R C, et al. Metasurface polarization optics: independent phase control of arbitrary orthogonal states of polarization[J]. Phys Rev Lett, 2017, 118(11): 113901.

DOI: 10.1103/PhysRevLett.118.113901

[35]

Guo J Y, Wang T, Quan B G, et al. Polarization multiplexing for double images display[J]. Opto-Electron Adv, 2019, 2(7): 180029.

DOI: 10.29026/oea.2019.180029

[36]

Deng L G, Deng J, Guan Z Q, et al. Malus-metasurface-assisted polarization multiplexing[J]. Light Sci Appl, 2020, 9: 101.

DOI: 10.1038/s41377-020-0327-7

[37]

Li J X, Chen Y Q, Hu Y Q, et al. Magnesium-based metasurfaces for dual-function switching between dynamic holography and dynamic color display[J]. ACS Nano, 2020, 14(7): 7892−7898.

DOI: 10.1021/acsnano.0c01469.

[38]

Deng J, Deng L G, Guan Z Q, et al. Multiplexed anticounterfeiting meta-image displays with single-sized nanostructures[J]. Nano Lett, 2020, 20(3): 1830−1838.

DOI: 10.1021/acs.nanolett.9b05053

[39]

Wen D D, Cadusch J J, Meng J J, et al. Multifunctional dielectric metasurfaces consisting of color holograms encoded into color printed images[J]. Adv Funct Mater, 2020, 30(3): 1906415.

DOI: 10.1002/adfm.201906415

[40]

Deng J, Yang Y, Tao J, et al. Spatial frequency multiplexed meta-holography and meta-nanoprinting[J]. ACS Nano, 2019, 13(8): 9237−9246.

DOI: 10.1021/acsnano.9b03738

[41]

Zhang F, Pu M B, Gao P, et al. Simultaneous full-color printing and holography enabled by centimeter-scale plasmonic metasurfaces[J]. Adv Sci, 2020, 7(10): 1903156.

DOI: 10.1002/advs.201903156

[42]

杨睿,于千茜,潘一苇,等. 基于片上超表面的多路方向复用全息术[J]. 光电工程, 2022, 49(10): 220177.

DOI: 10.12086/oee.2022.220177

Yang R, Yu Q Q, Pan Y W, et al. Directional-multiplexing holography by on-chip metasurface[J]. Opto-Electron Eng, 2022, 49(10): 220177.

DOI: 10.12086/oee.2022.220177

[43]

Berry M V. Quantal phase factors accompanying adiabatic changes[J]. Proc Roy Soc A Math Phys Eng Sci, 1984, 392(1802): 45−57.

DOI: 10.1098/rspa.1984.0023

[44]

Pancharatnam S. Generalized theory of interference, and its applications[J]. Proc Indian Acad Sci Sec A, 1956, 44(5): 247−262.

DOI: 10.1007/BF03046050

[45]

Xie X, Pu M B, Jin J J, et al. Generalized pancharatnam-berry phase in rotationally symmetric meta-atoms[J]. Phys Rev Lett, 2021, 126(18): 183902.

DOI: 10.1103/PhysRevLett.126.183902

[46]

Khorasaninejad M, Zhu A Y, Roques-Carmes C, et al. Polarization-insensitive metalenses at visible wavelengths[J]. Nano Lett, 2016, 16(11): 7229−7234.

DOI: 10.1021/acs.nanolett.6b03626

[47]

Chong K E, Staude I, James A, et al. Polarization-independent silicon metadevices for efficient optical wavefront control[J]. Nano Lett, 2015, 15(8): 5369−5374.

DOI: 10.1021/acs.nanolett.5b01752

[48]

Papadopoulos A, Nguyen T, Durmus E, et al. IllusionPIN: shoulder-surfing resistant authentication using hybrid images[J]. IEEE Trans Inf Forensics Secur, 2017, 12(12): 2875−2889.

DOI: 10.1109/TIFS.2017.2725199

[49]

Mannos J, Sakrison D. The effects of a visual fidelity criterion of the encoding of images[J]. IEEE Trans Inf Theory, 1974, 20(4): 525−536.

DOI: 10.1109/TIT.1974.1055250

[50]

Dai Q, Guan Z Q, Chang S, et al. A single-celled tri-functional metasurface enabled with triple manipulations of light[J]. Adv Funct Mater, 2020, 30(50): 2003990.

DOI: 10.1002/adfm.202003990

融合空频复用和近远场复用的多功能超表面图像显示
  • 图  1

    融合空频复用和近远场复用的多功能超表面图像显示示意图

  • 图  2

    超表面单元结构及调控原理。(a)纳米结构单元示意图;(b)几何相位延迟量与纳米砖转角的关系;(c)出射光强度与纳米砖转角的关系

  • 图  3

    人眼观测模型与空间频率复用示例。(a)人眼对正弦波图像的观测示意;(b)对比敏感函数;(c)图像P1;(d)图像P2;(e)取图像P1的高频部分与图像P2的低频部分并进行合成得到混合图像Pi

  • 图  4

    多功能超表面设计流程与优化结果。(a)多功能超表面设计流程;(b)多功能超表面纳米砖阵列转角分布优化结果;(c)多功能超表面纳米结构单元的反射率分布; (d-g)不同波长下相位延迟总量与纳米砖转角的关系

  • 图  5

    SOI超表面样片加工工艺流程及样片局部电镜图。 (a) SOI超表面样片加工工艺流程;(b)样片局部电镜图

  • 图  6

    多功能超表面的近、远场实验装置。(a)近场观测灰度纳米印刷图像的显微镜装置;(b)远场全息实验光路

  • 图  7

    近场纳米印刷图像的实验结果。(a)白光照射下的实验图像;(b-e)不同波长下的实验图像

  • 图  8

    远场全息图像设计与实验结果。(a)全息目标图像;(b-e)不同波长下的全息图像实验结果;(f)全息目标图像中提取的高频信息部分;(g-j)不同波长下的全息图像实验结果中提取的高频信息部分;(k)全息目标图像中提取的低频信息部分;(g-j)不同波长下的全息图像实验结果中提取的低频信息部分

  • 图  1
  • 图  2
  • 图  3
  • 图  4
  • 图  5
  • 图  6
  • 图  7
  • 图  8