New website getting online, testing
    • 摘要: 红外视频中的舰船目标检测在渔政管理、港口监控等领域具有广泛的应用价值。传统的背景减除方法,如高斯混合模型(GMM)、码本算法(Codebook)和ViBe算法等,在海面红外视频舰船检测过程中容易受到海浪的影响导致错误检测。本文提出一种新的算法框架实现红外海面视频中的舰船检测任务。该算法框架采用了Top-Hat操作对红外图像进行预处理,从而有效过滤杂波,随后应用改进ViBe算法完成对舰船目标的检测。实验结果表明,本文算法可以有效抑制背景噪声,取得了较好的检测效果。

       

      Abstract: The ship detection in infrared video has wide application value in fishery administration, port monitoring and other fields. Traditional background modeling methods, such as GMM(Gaussian mixture model), Codebook, and ViBe, will make more false detection in the ship detection from the infrared ocean video because of the impact of the waves. The paper proposes a new algorithm to detect ships in the infrared ocean video. The algorithm framework adopts the Top-Hat operation to preprocess the infrared image to filter the clutter effectively, then improves Vibe algorithm to detect the moving ship target. Experimental results show that the method can effectively suppress the background noise and get better detection results.