• 摘要: 光学薄膜在制备和使用过程中会因缺陷和污染等产生吸收中心,当薄膜受激光辐照后,吸收中心吸收光能会产生热信号,根据热信号可以测量光学薄膜的光学吸收损耗。本文提出基于红外热像仪测量薄膜光学吸收损耗的方法,在测试中加入参考样品可以减少环境温度变化和热像仪噪声对于温度测试结果的影响,对测量过程温度场取一定面积进行平均减少了激光指向波动和光斑分布不理想导致的有限元仿真计算误差。使用本方法测试了小尺寸45°的高反膜吸收损耗,测试得到吸收损耗为7.60 ppm,且测试了同批次大尺寸光学薄膜样品吸收损耗的空间分布情况。使用本方法测量的光学薄膜吸收率和激光量热测试结果一致,不需要长时间的恒温和严格环境温度控制,且测试样品尺寸不受限制。

       

      Abstract: During the preparation and use of the optical thin film, the absorption center will be generated due to defects and pollution. When the optical thin film is irradiated by a laser, the absorption center absorbs light energy and generates thermal signals, according to which the optical absorption loss of an optical film can be measured. The method proposed in this paper for measuring the optical absorption loss of a thin film based on a thermal imager. The addition of a reference sample in the test can reduce the impact of the changes of environmental temperature and the thermal imager noise on the temperature test results. Taking a certain area of the temperature field recorded by the thermal imager during the entire laser irradiation process can reduce the errors of the finite element simulation calculation caused by the laser pointing fluctuations and the unsatisfactory spot distribution. Using this method, the absorption loss of a small-size 45° high-reflection film was tested to be 7.60 ppm, and the spatial distribution of the absorption loss of the same batch of large-size optical film samples were tested. The absorption of the optical film measured by this method is consistent with the result of the laser calorimetry test. This method does not require long-term constant temperature and strict environmental temperature control, and the tested sample size is not limited.