New website getting online, testing
    • 摘要: 单幅图像去雨算法旨在将有雨图像中的雨纹去除生成高质量无雨图。目前基于深度学习的多尺度去雨算法较难捕获不同层次的细节,忽视尺度之间的信息互补,易导致生成图像失真,雨纹去除不彻底等问题。为此,本文提出了基于跨尺度注意力融合的图像去雨网络,在去除密集雨纹的同时尽量保留原本图片的细节,改善去雨图像的视觉质量。去雨网络由三个子网构成,每个子网用于获取不同尺度上的雨纹信息。各子网由跨尺度特征提取模块通过稠密连接的方式构成,该模块以跨尺度融合注意力为核心,构造不同尺度之间的关联实现信息互补,使图像兼顾细节与整体信息。实验结果表明,本文模型在合成数据集Rain200H和Rain200L上取得显著的去雨效果,去雨处理后的图片峰值信噪比达到了29.91/39.23 dB,结构相似度为0.92/0.99,优于一般的主流方法,并取得了良好的视觉效果,在保证去雨效果自然的同时保持了图像的细节。

       

      Abstract: Single-image rain removal is a crucial task in computer vision, aiming to eliminate rain streaks from rainy images and generate high-quality rain-free images. Current deep learning-based multi-scale rain removal algorithms face challenges in capturing details at different scales and neglecting information complementarity among scales, which can lead to image distortion and incomplete rain streak removal. To address these issues, this paper proposes an image rain removal network based on cross-scale attention fusion, aiming to remove dense rain streaks while preserving original image details to improve the visual quality of the rain removal image. The rain removal network consists of three sub-networks, each dedicated to obtaining rain pattern information at different scales. Each sub-network is composed of densely connected cross-scale feature fusion modules. The designed module takes the cross-scale attention fusion as the core, which establishes inter-scale relationships to achieve information complementarity and enables the network to consider both details and global information. Experimental results demonstrate the effectiveness of the proposed model on synthetic datasets Rain200H and Rain200L. The peak signal-to-noise ratio (PSNR) of the derained images reaches 29.91/39.23 dB, and the structural similarity index (SSIM) is 0.92/0.99, outperforming general mainstream methods and achieving favorable visual effects while preserving image details and ensuring natural rain removal.