• 摘要: 针对眼底视网膜分割存在病理伪影干扰、微小血管分割不完全和血管前景与非血管背景对比度低等问题,本文提出一种自适应特征融合级联Transformer视网膜血管分割算法。该算法首先通过限制对比度直方图均衡化和Gamma校正等方法进行图像预处理,以增强血管纹理特征;其次在编码部分设计自适应增强注意模块,降低计算冗余度同时消除视网膜背景图像噪声;然后在编解码结构底部加入级联群体Transformer模块,建立血管特征长短距离依赖;最后在解码部分引入门控特征融合模块,实现编解码语义融合,提升视网膜血管分割光滑度。在公共数据集DRIVE、CHASE_DB1和STARE上进行验证,准确率达到97.09%、97.60%和97.57%,灵敏度达到80.38%、81.05%和80.32%,特异性达到98.69%、98.71%和98.99%。实验结果表明,本文算法总体性能优于现有大多数先进算法,对临床眼科疾病的诊断具有一定应用价值。

       

      Abstract: An adaptive feature fusion cascaded Transformer retinal vessel segmentation algorithm is proposed in this paper to address issues such as pathological artifacts interference, incomplete segmentation of small vessels, and low contrast between vascular foreground and non-vascular background. Firstly, image preprocessing is performed through contrast-limited histogram equalization and Gamma correction to enhance vascular texture features. Secondly, an adaptive enhancing attention module is designed in the encoding part to reduce computational redundancy while eliminating noise in retinal background images. Furthermore, a cascaded ensemble Transformer module is introduced at the bottom of the encoding-decoding structure to establish dependencies between long and short-distance vascular features. Lastly, a gate-controlled feature fusion module is introduced in the decoding part to achieve semantic fusion between encoding and decoding, enhancing the smoothness of retinal vessel segmentation. Validation on public datasets DRIVE, CHASE_DB1, and STARE yielded accuracy rates of 97.09%, 97.60%, and 97.57%, sensitivity rates of 80.38%, 81.05%, and 80.32%, and specificity rates of 98.69%, 98.71%, and 98.99%, respectively. Experimental results indicate that the overall performance of this algorithm surpasses that of most existing state-of-the-art methods and holds potential value in the diagnosis of clinical ophthalmic diseases.