Abstract:
In modern measurement technology, frequency modulation continuous wave LiDAR combines the advantages of traditional radar and laser interferometry and plays an important role in the fields of the large-size space precision measurement, micro-distance measurement, and three-dimensional imaging with its characteristics such as non-contact, large measurement range, high resolution, and strong anti-jamming capability. However, in practical application, the frequency modulation of the laser light source can’t be completely linear, which greatly reduces the measurement accuracy of the frequency modulation continuous wave LiDAR technology. Therefore, how to suppress the effects of the laser frequency modulation nonlinearity has become a hot research topic in the field of frequency modulation continuous wave LiDAR measurement. This paper introduces the basic principle of the frequency modulation continuous wave LiDAR, and introduces four widely used nonlinear correction methods and some special nonlinear correction methods according to the different nonlinear correction schemes of the frequency modulation, and makes summaries and prospects.