• 摘要: 针对现有显著性检测算法在复杂场景下细节特征丢失的问题,本文提出了一种多层子网络级联式混合信息流的融合方法。首先使用FCNs骨干网络学习多尺度特征。然后通过多层子网络分层挖掘构建级联式网络框架,充分利用各层次特征的上下文信息,将检测与分割任务联合处理,采用混合信息流方式集成多尺度特性,逐步学习更具有辨别能力的特征信息。最后,嵌入注意力机制将显著性特征作为掩码有效地补偿深层语义信息,进一步区分前景和杂乱的背景。在6个公开数据集上与现有的9种算法进行对比分析,经实验验证,本文算法运行速度可达20.76帧/秒,并且实验结果在5个评价指标上普遍达到最优,即使对于挑战性很强的全新数据集SOC。本文方法明显优于经典的算法,其测试结果F-measure提升了1.96%,加权F-measure提升了3.53%,S-measure提升了0.94%,E-measure提升了0.26%。实验结果表明,提出的模型有效提高了显著性检测的正确率,能够适用于各种复杂的环境。

       

      Abstract: In view of the detail feature loss issue existing in the complex scenario of existing saliency detection algorithms, a fusion method of multi-layer sub-network cascade hybrid information flows is proposed in this paper. We first use the FCNs backbone network to obtain multi-scale features. Through the multi-layer sub-network layering mining to build a cascading network framework, the context information of the characteristic of each level is fully used. The detection and segmentation tasks are processed jointly. Multi-scale features are integrated by hybrid information flows, and more characteristic information with discernment is learned step by step. Finally, the embedded attention mechanism effectively compensates the deep semantic information as a mask, and further distinguishes the foreground and the messy background. Compared with the existing 9 algorithms on the basis of the 6 public datasets, the running speed of the proposed algorithm can reach 20.76 frames and the experimental results are generally optimal on 5 evaluation indicators, even for the challenging new dataset SOC. The proposed method is obviously better than the classic algorithm. Experimental results were improved by 1.96%, 3.53%, 0.94%, and 0.26% for F-measure, weighted F-measure, S-measure, and E-measure, respectively. These experimental results show that the demonstrating the proposed model has higher accuracy and robustness and can be suitable for more complex environments, the proposed framework improves the performance significantly for state-of-the-art models on a series of datasets.