New website getting online, testing
    • 摘要: 利用532 nm皮秒脉冲激光在金纳米光栅表面诱导表面等离子体激发CdSe量子点荧光,并测量了CdSe量子点荧光增强效应。分别采用AFM刻蚀方法和自组装方法在硅基金膜表面制备了纳米光栅/CdSe量子点的多层薄膜结构。通过调节皮秒脉冲激光的功率,在显微拉曼平台上测量了CdSe量子点的荧光光谱。结果表明,金纳米光栅/CdSe量子点结构能够实现量子点远场荧光大幅增强,其最大荧光强度达7.80倍,并在达到最大强度点开始迅速饱和。该研究结果可广泛应用于光电器件、生物医学检测研究等领域。

       

      Abstract: The fluorescence enhancement effect of CdSe quantum dots (QDs) was measured by using a picosecond pulsed laser with a 532 nm excitation wavelength to induce surface plasmon (SP) on a gold nanograting surface. A layered thin film was prepared on the gold film surface of silicon fund by atomic force microscope (AFM) etching and self-assembly method, respectively. The fluorescence spectrum of CdSe QDs was measured by adjusting the power of picosecond pulsed laser on a micro-Raman measuring platform. The results showed that the structure of the gold nanograting and CdSe QDs could greatly enhance the far-field fluorescence of CdSe QDs, the maximum fluorescence intensity was up to 7.80 times, and it had been saturated rapidly at the point of reaching the maximum intensity. The results of this study could be widely used in fields of the optoelectronic devices, biomedical detection.