• 摘要: 焦炉煤气多组分浓度测量对优化炼焦工艺,提升能源利用率,减少污染物排放,以及保障安全生产具有重要意义。为提高拉曼光谱对焦炉煤气多组分测量的准确度,基于特征提取和小样本建模的思想,提出一种连续投影与支持向量机算法(SPA-SVM)联用模型。首先,对比不同机器学习全光谱建模的预测精度,通过留一交叉验证法(LOOCV)确定SVM算法偏差(最小)。为进一步提高模型运行速度和精度,采用SPA算法筛选焦炉煤气的光谱数据特征点,利用特征数据建模并反演多组分浓度。结果表明,H2、CO2、CO、N2和CH4浓度预测值的决定系数R2分别达到0.9918、0.9975、0.9985、0.9872和0.9958,5种组分的平均绝对百分比误差(MAPE)分别为1.2%、0.5%、0.6%、2.6%、0.8%,准确度优于全光谱建模。该研究对焦炉煤气多组分精准测量提供了方法参考。

       

      Abstract: Accurate multi-component concentration measurement of coke oven gas plays a critical role in optimizing coking processes, improving energy utilization efficiency, reducing pollutant emissions, and ensuring production safety. To enhance measurement accuracy in multi-component coke oven gas analysis using Raman spectroscopy, this study proposed a successive projections algorithm-support vector machine (SPA-SVM) model based on feature extraction and small-sample modeling principles. First, the prediction accuracy of full-spectrum machine learning models was compared. Leave-one-out cross-validation (LOOCV) identified SVM with minimum deviation. To further enhance model speed and precision, the SPA algorithm screened feature points in coke oven gas spectral data. Feature-based modeling retrieved multi-component concentrations. Results demonstrate that H2, CO2, CO, N2, and CH4 concentration predictions achieve determination coefficients (R2) of 0.9918, 0.9975, 0.9985, 0.9872, and 0.9958, respectively. The mean absolute percentage errors (MAPEs) measure 1.2%, 0.5%, 0.6%, 2.6%, and 0.8%, respectively. This approach delivers superior accuracy over full-spectrum modeling methods. This research provides methodological guidance for precise multi-component coke oven gas measurement.