• 摘要: 针对现有模型在检测红外道路目标时精度不足的问题,提出一种YOLOv8-AFDP模型。首先,该模型利用ASF-YOLO模型的多尺度注意力特征融合思想对颈部网络进行优化,并且在此基础上加入小目标检测层,进一步增强网络对不同尺度目标的检测性能。其次,使用特征金字塔共享卷积(feature pyramid shared convolution, FPSC)模块替换快速空间金字塔池化(spatial pyramid pooling fast, SPPF)模块,在处理多尺度特征图时捕捉更多细粒度信息;同时,在控制计算成本的前提下,引入动态上采样(DySample)方法,从而保留更多红外道路目标的提取特征。最后,使用PIoU (Powerful-IoU)损失函数代替CIoU损失函数,提高模型的检测精度和收敛速度。实验结果表明,YOLOv8-AFDP相比于YOLOv8在红外数据集M3FD上的评价指标mAP@0.5提高8.3个百分点,达到83.8%,并且模型参数量减少12.3%。所设计的YOLOv8-AFDP模型能够实现对红外道路目标的精确检测,降低道路安全隐患。

       

      Abstract: Aiming at the problem of insufficient accuracy of existing models in detecting infrared road targets, this paper proposes a YOLOv8-AFDP model. First, the model utilizes the multi-scale attention feature fusion idea of the ASF-YOLO model to optimize the neck network, and adds a small target detection layer to further enhance the network's detection performance for targets at different scales. Second, the feature pyramid shared convolution (FPSC) module is used to replace the spatial pyramid pooling fast (SPPF) module to capture more fine-grained information when processing multiscale feature maps. At the same time, the dynamic up-sampling (DySample) method is introduced to retain more extracted features of infrared road targets while controlling the computational cost. Finally, the PIoU (Powerful-IoU) loss function is used instead of the CIoU loss function to improve the model's detection accuracy and convergence speed. The experimental results showed that YOLOv8-AFDP achieves an 8.3 percentage point increase in mAP@0.5 on the infrared data set M3FD compared to YOLOv8, reaching 83.8%, and the model's parameter count is reduced by 12.3%. The YOLOv8-AFDP model designed in this paper achieves accurate detection of infrared road targets and reduces road safety hazards.