New website getting online, testing
    • 摘要: 为缓解核磁共振成像(MRI)中的长时间采集困境,大数据驱动下的算法与模型融合已成为实现高质量MRI重建的重要手段。然而,现有方法多集中于视觉特征的提取,忽视稳健重建所需的深层次语义信息。为此,提出一种联合分层语义网络与物理模型网络的模型驱动架构,旨在提升重建性能的同时维持计算效率。该架构包含四个关键模块:上下文提取模块,用于捕获丰富的上下文特征以降低背景干扰;多尺度聚合模块,通过整合多尺度信息保留粗细解剖细节;语义图推理模块,建模语义关系以增强组织区分度并抑制伪影;双尺度注意力模块,强化不同细节层级上的关键特征表达。这种层次化且语义感知的设计有效减少混叠伪影,并显著提升图像保真度。实验结果表明,在涵盖不同采样率的多样化数据集上,所提方案在定量评估和视觉质量方面均优于现有方法。例如,在IXI数据集四倍径向加速的实验中,所提方法的峰值信噪比达到48.15 dB,平均领先最新的对比算法1.00 dB,同时实现更高的加速比并保持可靠的图像重建效果。

       

      Abstract: To address the challenge of prolonged acquisition times in magnetic resonance imaging (MRI), data-driven algorithms and the model integration have emerged as crucial approaches for achieving high-quality MRI reconstruction. However, existing methods predominantly focus on visual feature extraction while neglecting deep semantic information critical for robust reconstruction. To bridge this gap, this study proposes a model-driven architecture that synergistically combines hierarchical semantic networks with physical model networks, aiming to enhance reconstruction performance while maintaining computational efficiency. The architecture comprises four core modules: a context extraction module to capture rich contextual features and mitigate background interference; a multi-scale aggregation module integrating multi-scale information to preserve coarse-to-fine anatomical details; a semantic graph reasoning module to model semantic relationships for improved tissue differentiation and artifact suppression; a dual-scale attention module to enhance critical feature representation across different detail levels. This hierarchical and semantic-aware design effectively reduces aliasing artifacts and significantly improves image fidelity. Experimental results demonstrate that the proposed method outperforms state-of-the-art approaches in both quantitative metrics and visual quality across diverse datasets with varying sampling rates. For instance, in 4× radial acceleration experiments on the IXI dataset, our approach achieved a peak signal-to-noise ratio (PSNR) of 48.15 dB, surpassing the latest comparison algorithms by approximately 1.00 dB on average, while enabling higher acceleration rates and maintaining reliable reconstruction outcomes.