New website getting online, testing
    • 摘要: 金属管件表面微小缺陷低检出率是工业零部件检测中面临的关键问题。针对此问题,本文构造一种改进YOLOv9-MM模型,以提高小目标检测的准确性。设计了一种针对精密金属管件的图像实时采集系统,采用环形光源结合远心镜头,可实现管件表面的全角度覆盖,消除缺失区域导致的漏检问题;引入浅层网络的特征图,结合Dysample上采样模块,实现深度特征的动态融合;通过改进损失函数,提高小目标检测的准确率。结果表明,所提方法平均检测精度达到70.2%,检测速度达到90 f/s。所提方法在应用中展现出一定的可行性。

       

      Abstract: The low detection rate of tiny defects on the surface of metal pipe fittings is a key issue confronting industrial component inspection. In aiming at this problem, an improved YOLOv9-MM model was constructed to improve the accuracy of small target detection. A real-time image acquisition system for precision metal pipe fittings was designed. By using an annular light source combined with a telecentric lens, the surface of pipe fittings can be snapped by the CCD camera and covered at all angles to eliminate the problem of missing areas. The feature map extracted methods of shallow network were introduced, and the upper sampling module of Dysample was combined to realize the dynamic fusion of depth features. By improving the loss function, the precision of small target detection is greatly improved. The results show that the proposed method has an average detection accuracy of 70.2% and a detection speed of 90 f/s. The proposed method shows some feasibility in the actual application.