New website getting online, testing
    • 摘要: 针对飞行过程中,在高空气压较低,飞机货舱若发生火灾,烟雾颗粒半空悬浮,传统烟雾探测器难以检测,且在其它环境亦存在误漏报率较高,难以可视化等问题,设计了一款图像型火灾探测器,采用改进YOLOv5s算法实现烟火目标检测。首先将骨干网络替换为GhostNet轻量级骨干网络,便于硬件部署;在骨干网络与融合网络的连接处嵌入了协同注意力模块,强化对有效特征的提取。接着,针对火灾目标的发展变化特性,对特征融合网络中的C3结构进行改进,搭建了VoV-GSCSP模块,同时在融合网络和检测头之间嵌入Slim-ASFF模块,共同加强不同尺度特征融合的同时,实现了整体网络的进一步轻量化。最后,将回归损失替换为Focal EIOU,解决了惩罚项失效问题,并且提高了对正样本的预测能力。图像型航空火灾探测器以国产AI芯片RK3588为核心,连接CMOS图像传感器进行数据采集,通过网络实现与机载显示系统的信息交互。测试结果表明:在模拟飞机货舱顶部四角布置设备,可实现10 s内火焰报警,20 s内烟雾报警,为确保航空器安全提供了一种可行的解决方案。

       

      Abstract: Due to the low high air pressure during the flight, if a fire occurs in the cargo hold of the aircraft, the smoke particles are suspended in mid-air. The traditional smoke detector is difficult to detect, and there is also a high false alarm rate and difficult visualization in other environments, an image-based fire detector was designed, and the improved YOLOv5s algorithm was used to realize the pyrotechnic target detection. First, the backbone network is replaced with a lightweight GhostNet backbone network to facilitate hardware deployment. A collaborative attention module is embedded in the connection between the backbone and the converged network to strengthen the extraction of effective features. Then, according to the development and change characteristics of fire targets, the C3 structure in the feature fusion network was improved, the VoV-GSCSP module was built, and the Slim-ASFF module was embedded between the fusion network and the detection head, so as to jointly strengthen the feature fusion of different scales and realize the further lightweight of the overall network. Finally, the regression loss is replaced by focal EIOU, which solves the problem of penalty term failure and improves the prediction ability of positive samples. The image-based aviation fire detector takes the domestic AI chip RK3588 as the core, connects to the CMOS image sensor for data collection, and realizes information interaction with the airborne display system through the network. The test results show that the equipment can be arranged at the top four corners of the cargo compartment of the simulated aircraft, which can realize the flame alarm within 10 seconds and the smoke alarm within 20 seconds, which provides a feasible solution for ensuring the safety of the aircraft.