New website getting online, testing
    • 摘要: 针对合成孔径雷达 (synthetic aperture radar, SAR)图像样本特征差异大、目标尺度不均衡、背景散斑噪声高所导致的检测精度低、推理速度慢问题,提出一种融合空-频域的动态SAR图像目标检测算法。首先,采用分流感知策略构造空-频域感知单元,结合动态感受野及分数阶Gabor变换法,增强算法对空间多样性特征和频率散射特征的捕获能力与感知力,优化模型对全局上下文信息的保留能力,加快推理速度,降低特征映射模式相似性与背景噪声干扰,有效改善漏检、误检情况。其次,采用重参数学习法设计自适应特征融合模块,优化多尺度特征间的交互与整合,丰富特征的多样性,缓解特征采样引起的差异映射与信息丢失问题,加强小目标信息与关键频率信息在融合过程中的显著性,提高多尺度样本检测精度。最后,引入DY_IoU动态回归损失函数,利用自适应尺度惩罚因子与动态非单调注意力机制解决锚框膨胀和位置偏差问题,进一步增强模型对多尺度目标的定位与检测能力,加快模型收敛速度,减少模型计算量。在公开数据集SAR-Acraft-1.0和HRSID上进行相关实验,实验结果表明:该方法mAP@0.5数值达到了95.9%和98.8%,较基线模型分别提升5.2%和1.2%,且优于其他对比算法。表明该算法显著提升了检测精度,具备良好的鲁棒性与泛化性。

       

      Abstract: A dynamic SAR image target detection algorithm integrating space-frequency domains is proposed to address challenges such as significant feature differences in SAR image samples, imbalanced target scales, and high speckle noise in the background, which result in low detection accuracy and slow inference speed. First, a dual-stream perception strategy constructs spatial-frequency perception units, leveraging dynamic receptive fields and fractional-order Gabor transforms to enhance the model’s ability to capture spatial diversity and frequency scattering features. This way improves the retention of global contextual information, accelerates inference, reduces the similarity of feature mapping patterns, and mitigates background noise interference, effectively reducing missed and false detections. Second, a re-parameterization-based adaptive feature fusion module is designed to optimize interactions across multi-scale features, enriching feature diversity, alleviating mapping discrepancies and information loss caused by feature sampling, and enhancing the salience of small target and key frequency information during fusion, thereby improving detection precision. Finally, the DY_IoU dynamic regression loss function is introduced, utilizing adaptive scale penalty factors and a dynamic non-monotonic attention mechanism to address anchor box expansion and positional deviation, further enhancing the localization and detection capabilities for multi-scale targets. This way also accelerates model convergence and reduces computational overhead. Experiments conducted on the public datasets SAR-Acraft-1.0 and HRSID demonstrate that the proposed method achieves mAP@0.5 values of 95.9% and 98.8%, respectively, representing 5.2% and 1.2% improvements over baseline models and outperforming other comparison algorithms. These results indicate that the proposed algorithm improves detection accuracy and exhibits strong robustness and generalization capabilities.