New website getting online, testing
    • 摘要: 针对传统结直肠息肉图像分割方法存在的目标分割不够精确、对比度不足,以及边缘细节模糊等问题,文中结合极化自注意力和Transformer提出了一种新的结直肠息肉图像分割方法。首先,设计了一种改进的相位感知混合模块,通过动态捕捉Transformer结直肠息肉图像的多尺度上下文信息,以使目标分割更加精确。其次,在新方法中引入了极化自注意力机制,实现了图像的自我注意力强化,使得到的图像特征可以直接用于息肉分割任务中,以达到提高病灶区域与正常组织区域对比度的目的。另外,利用线索交叉融合模块加强动态分割时对图像几何结构的捕捉能力,以达到提升结果图像边缘细节的目的。实验结果表明,文中提出的方法不仅能够有效地提升结直肠息肉分割的精确度和对比度,并且还能够较好地克服分割图像细节模糊的问题。在数据集CVC-ClinicDB、Kvasir 、CVC-ColonDB和ETIS-LaribPolypDB上的测试结果表明,文中所提新方法能够取得更好的分割效果,其Dice相似性指数分别为0.946、0.927、0.805和0.781。

       

      Abstract: A new colorectal polyp image segmentation method combining polarizing self-attention and Transformer is proposed to solve the problems of traditional colorectal polyp image segmentation such as insufficient target segmentation, insufficient contrast and blurred edge details. Firstly, an improved phase sensing hybrid module is designed to dynamically capture multi-scale context information of colorectal polyp images in Transformer to make target segmentation more accurate. Secondly, the polarization self-attention mechanism is introduced into the new method to realize the self-attention enhancement of the image, so that the obtained image features can be directly used in the polyp segmentation task to improve the contrast between the lesion area and the normal tissue area. In addition, the cue-cross fusion module is used to enhance the ability to capture the geometric structure of the image in dynamic segmentation, so as to improve the edge details of the resulting image. The experimental results show that the proposed method can not only effectively improve the precision and contrast of colorectal polyp segmentation, but also overcome the problem of blurred detail in the segmentation image. The test results on the data sets CVC-ClinicDB, Kvasir, CVC-ColonDB and ETIS-LaribPolypDB show that the proposed method can achieve better segmentation results, and the Dice similarity index is 0.946, 0.927, 0.805 and 0.781, respectively.