New website getting online, testing
    • 摘要: 本文提出了一种基于参考滤波器及互相关算法的新型砷化镓光纤温度解调方法。该方法利用二次高斯滤波方法实现数据平滑预处理,采用长波通滤波(LPF)波形作为参考波形的改进型互相关算法,实现砷化镓光纤温度的解调。基于获取的互相关运算相关系数结果,采用多次多项式拟合,进一步提高互相关算法解调精度。在−30 ℃至250 ℃的测温范围内,该方法的波长解调误差可达到±0.0016 nm,平均温度解调误差为±0.388 ℃。相较于现有的归一化光强解调法,采用LPF波形作为参考波形的互相关算法在抗噪性能上实现了2.64倍的提升,且较之于未使用LPF参考波形的互相关算法提升了2.08倍。

       

      Abstract: This paper presents a new demodulation approach for optical fiber temperature sensors based on GaAs, leveraging reference filtering and a cross-correlation algorithm. It preprocesses the data through double Gaussian filtering for smoothing and implements an enhanced cross-correlation algorithm adopting a long-pass filter (LPF) waveform as the reference signal to demodulate the GaAs optical fiber temperature sensor. Using the correlated data from cross-correlation operations, it applies a multiple polynomial fitting strategy to further augment the precision of the cross-correlation algorithm’s demodulation. Across a temperature sensing range of −30 to 250 ℃, the wavelength demodulation error of this method can reach ±0.0016 nm, and the temperature demodulation accuracy is ±0.388 ℃. Relative to the prevailing normalized optical intensity demodulation method, the cross-correlation algorithm employing an LPF waveform as the reference demonstrates a 2.64-fold increase in noise immunity and a 2.08-fold improvement over cross-correlation algorithms without the LPF reference waveform.