New website getting online, testing
    • 摘要: 大部分注意力机制虽然能增强图像特征,但没有考虑局部特征的关联性影响特征整体的问题。针对以上问题,本文提出局部注意力引导下的全局池化残差分类网络(MSLENet)。MSLENet的基线网络为ResNet34,首先改变首层结构,保留图像重要信息;其次提出多分割局部增强注意力机制(MSLE)模块,MSLE模块将图像整体分割成多个小图像,增强每个小图像的局部特征,通过特征组交互的方式将局部重要特征引导到全局特征中;最后提出池化残差(PR)模块来处理ResNet残差结构丢失信息的问题,提高各层之间的信息利用率。实验结果表明,MSLENet通过增强局部特征的关联性,在多个数据集上均有良好的效果,有效地提高了网络的表达能力。

       

      Abstract: Most attention mechanisms, while enhancing image features, do not consider the impact of local feature interaction on overall feature representation. To address this issue, this paper proposes a global pooling residual classification network guided by local attention (MSLENet). The baseline network for MSLENet was ResNet34. First, the initial layer structure was modified to retain important image information. Second, a multiple segmentation local enhancement attention mechanism (MSLE) module was introduced. The MSLE module first segmented the image into multiple small images, then enhanced the local features of each small image, and finally integrated these important local features into the global features through feature group interaction. Lastly, a pooling residual (PR) module was proposed to address the information loss problem in the ResNet residual structure and improve the information utilization between layers. The experimental results show that by enhancing the interaction of local features, MSLENet achieves good performance on multiple datasets and effectively improves the expressive ability of the network.