New website getting online, testing
    • 摘要: 光学相干断层成像(OCT)广泛应用于眼科诊断与辅助治疗,但其成像质量不可避免地受到散斑噪声和运动伪影影响。本文提出了一种针对OCT超分辨率任务的多教师知识蒸馏网络MK-OCT,使用不同优势的教师网络训练平衡、轻量级和高效的学生网络。MK-OCT中高效通道蒸馏方法ECD的使用也使得模型能够更好地保留视网膜图像的纹理信息,满足临床需要。实验结果表明,与经典超分辨率网络相比,本文所提模型在重建精度和感知质量两个方面均表现优异,模型尺寸更小,计算量更少。

       

      Abstract: Optical coherence tomography (OCT) is widely used in ophthalmic diagnosis and adjuvant therapy, but its imaging quality is inevitably affected by speckle noise and motion artifacts. This article proposes a multi teacher knowledge distillation network MK-OCT for OCT super-resolution tasks, which uses teacher networks with different advantages to train balanced, lightweight, and efficient student networks. The use of efficient channel distillation method ECD in MK-OCT also enables the model to better preserve the texture information of retinal images, meeting clinical needs. The experimental results show that compared with classical super-resolution networks, the model proposed in this paper performs well in both reconstruction accuracy and perceptual quality, with smaller model size and less computational complexity.