New website getting online, testing
    • 摘要: 飞秒激光双光子聚合微纳加工技术作为重要的三维微纳结构制备手段,已成为国际前沿研究热点。该技术利用激光与物质相互作用的双光子非线性吸收效应和阈值效应,可以突破经典光学理论衍射极限,实现纳米尺度的激光加工分辨力,在三维功能性微纳器件制备领域正在发挥着十分重要的作用。本文在介绍飞秒激光双光子聚合三维微纳加工技术的光物理和光化学过程基本原理的基础上,重点回顾人们在改善加工线宽及分辨力、提高加工效率等方面的研究进展与发展概况。该技术所制备的各种微光学器件、集成光学器件、微机电系统以及生物医学器件,不仅充分展示了飞秒激光双光子聚合三维微纳加工技术的高空间分辨力和真三维加工特点,也为其在相关前沿领域的应用提供具有启发性的思路。最后,对该技术实现高精度、高效率、低成本、大面积、多功能的三维微纳结构加工所存在的挑战和未来发展方向,进行了讨论和展望。

       

      Abstract: Femtosecond laser two-photon polymerization (TPP) micro-nano fabrication technology, as an important method for the preparation of three-dimensional (3D) micro-nanostructures, has become a hot spot of international frontier research. Using the two-photon absorption effect and the threshold effect of the interaction between laser and matter, this technology can break through the diffraction limit of classical optical theory and achieve nanoscale laser fabrication resolution. It is expected to play an important role in the field of 3D functional micro-nano device fabrication. In this paper, the basic principles of photophysical and photochemical processes in femtosecond pulsed laser TPP fabrication technology will be described, and the research progress and development of this technology in improving line width and fabrication resolution, and improving fabrication efficiency will be reviewed. Then, using the high spatial resolution and true 3D fabrication characteristics of femtosecond laser TPP micro-nano fabrication technology, the researchers prepared various micro-optical devices, integrated optical devices, micro-electromechanical systems, and biomedical devices, fully demonstrating the application prospect of this technology. Finally, how to achieve high-precision, high-efficiency, low-cost, large-area, multi-functional materials and microstructure fabrication, as well as existing challenges and future development directions are discussed and prospected.