Abstract:
With the advent of the 5G communication era, much attention has been paid to manipulate electromagnetic waves at subwavelength scale. In this paper, we propose comb-shaped meta-structures based on space-filling curves, and use theoretical analysis and numerical simulation method to study the near-field electromagnetic properties of these meta-surfaces. Finally, the effective excitation of all order eigenmodes of spoof localized surface plasmon resonance can be realized in these meta-structures. Through adjusting the structure period to change the effective length of the air waveguide, high compression ratio between resonant wavelength and device size, and high Q-factor can be simultaneously achieved. Moreover, spoof localized surface plasmons excited by space-filling structures are alternately supported by magnetic dipole and electric dipole modes. As a consequence, changing the distribution form of the space-filling curve with the remaining parameters unchanged, the resonant characteristics of the surface plasmon supported by the structure are not affected by the shape tortuosity, but are only related to the total length of the equivalent waveguide. Thus, the space-filling curvilinear structure can be freely designed. We believe that, our results have great potential in designing the high Q-factor miniaturized electromagnetic resonator devices based on spacing-filling curvilinear meta-structure.