New website getting online, testing
    • 摘要: 受到自然界的猪笼草启发,超滑表面受到了许多关注。本文通过激光加工技术在石墨烯和聚偏氟乙烯的复合材料表面(G@PVDF)进行烧蚀,采用热旋涂法将石蜡材料均匀地填充于网格状沟槽内部。利用共聚焦显微镜(CLSM)和扫描电子显微镜(SEM)表征激光加工后沟槽的形貌与深度,利用UV3600以及红外热成像仪测试样品的光吸收以及光热特性。当复合材料表面未受到强光照射时,液滴“钉”在表面;由于石墨烯具有优异的光热转换能力,当复合材料表面受到强光照射时,复合材料表面吸收光能并产生热量使石蜡融化,液滴与表面由粗糙的气/液/固状态转变为光滑的气/液/润滑剂/固状态,液滴可在倾斜角约10°的状态滑动且无残留。另一方面,通过外界电压也能同样控制液滴的行为。研究结果对于智能化操控液滴有着重要的意义。

       

      Abstract: Inspired by the nepenthes in nature, slippery liquid-infused porous substrates (SLIPS) have attracted extensive research attentions. In this work, a graphene @ polyvinylidene fluoride (G@PVDF) composite substrate was ablated by a laser technology. Then paraffin is uniformly filled in the grooves by a thermal spin-coating method. A confocal laser scanning microscope and a scanning electron microscope were used to characterize the surface morphology and depth of the grooves. UV3600 and Infrared thermal imagers were used to test the absorption and photothermal characteristics of the samples. The droplet is "pinned" on the surface without light irradiation. Since graphene has excellent photothermal conversion capability, the photothermal conversion happens upon light irradiation. The temperature is high enough to melt the paraffin, the interface state changes from the friction gas-liquid-solid interface to a smooth gas-liquid-lubricant-solid interface. The droplet can slide at an inclination angle of about 10° without leaving any residues. In addition, the droplet sliding can be controlled by an external voltage. This work shows potentials in manipulating the behavior of droplets.