New website getting online, testing
    • 摘要: 针对现有彩色图像检索算法存在旋转变化鲁棒性差、特征维度高和检索时间长的问题,通过融合主曲率的改进方向梯度特征与HSV颜色特征,提出了一种创新的多尺度图像检索方法。该方法从多个尺度将图像表面的几何曲率信息融合到FHOG描述符中,得到基于主曲率的改进方向梯度算法(P-FHOG),在此基础上进一步融合图像的颜色信息,得到基于颜色特征与改进方向梯度特征的多尺度图像检索方法(CP-FHOG)。在Corel-1000与Coil-100数据集上与先进的图像检索方法进行对比实验,分别取得了85.89%和93.38%的平均准确率,该算法相比其他算法准确率更高、旋转变化鲁棒性更强、检索时间更短,提高了检索效率。

       

      Abstract: Aiming at the problems of poor robustness of rotation change, high feature dimension, and long retrieval time of existing color image retrieval algorithms, this paper proposed an innovative image retrieval method by fusing color features and improved directional gradient features. It proposed an improved directional gradient algorithm based on the principal curvatures (P-FHOG) by combining the geometric curvature information of the image surface into the FHOG descriptor from multiple scales. At the same time, the color information of the image was further fused to obtain the multi-scale image retrieval method based on the color features and the improved directional gradient features (CP-FHOG). The experiment was compared with the advanced image retrieval methods on the Corel-1000 and Coil-100 data sets, and the average accuracy rates of 85.89% and 93.38% were achieved, respectively. The results show that the proposed algorithm is more accurate and robust (in rotation change) than other algorithms.