New website getting online, testing
    • 摘要: 针对激光器单光束加工二维码输出能量大部分被浪费且加工效率低的问题,本文采用了一种多光束并行加工的方法来提高加工效率。仿真研究了QR码加工填充率和对比度对识别率和识别时间的影响,得到了一个二维码可识别范围。然后使用飞秒激光器基于空间光调制器的并行加工技术进行试验,对实验结果的对比度和加工填充率展开分析。分析结果表明,在二维码的识读评价标准范围内,加工填充率越大,识别率越低,识别时间越长;同样,对比度越低,识别率越低,识别时间越长。同时,对单束激光加工二维码进行了实验,分析了并行加工与单光束加工的加工时间等参数的对比,得到并行加工要比单激光束加工提高约10倍的效率。

       

      Abstract: Aiming at the problem that most of the output energy of laser single-beam processing of two-dimensional codes is wasted and the processing efficiency is low, this paper adopts a multi-beam parallel processing method to improve the processing efficiency. The simulation studies the effect of the QR code processing filling rate, and contrast on recognition rate, and recognition time, and obtains a QR code recognizable range. Then use the femtosecond laser based on the parallel processing technology of the spatial light modulator to conduct experiments, and analyze the contrast and processing fill rate of the experimental results. The analysis results show that within the range of the QR code reading evaluation standard, the greater the processing filling rate is, the lower the recognition rate and the longer the recognition time are; similarly, the lower the contrast is, the lower the recognition rate and the longer the recognition time are. At the same time, experiments were performed on the single-beam laser processing of two-dimensional codes. The comparison of processing time and other parameters of the parallel processing and single-beam processing was analyzed, and the efficiency of the parallel processing was about 10 times higher than that of the single-beam processing.