New website getting online, testing
    • 摘要: 对谱域光学相干层析系统(SD-OCT)采用色散补偿方法进行优化,是提高系统成像质量的重要方式。本文提出了一种基于数值多项式拟合的色散补偿方法。该方法通过提取干涉信号的相位并解包裹,利用数值多项式对解包裹后的相位进行拟合,然后根据拟合出的高阶色散因子对干涉信号做相位补偿。本文利用SD-OCT系统测量出不同光程差位置处的轴向分辨率和信噪比,通过比较分析色散补偿前后系统的轴向分辨率及信噪比,来验证该方法的有效性和可靠性。结果表明,本文设计的色散补偿技术可以使系统具有良好的轴向分辨率,三阶多项式拟合相位的色散补偿方法在约1.5 mm的成像深度范围内有明显的优化效果。

       

      Abstract: Dispersion compensation for the data processing of the spectral domain optical coherence tomography (SD-OCT) system is an important way to improve the imaging quality of the system. A dispersion compensation method for spectral domain optical coherence tomography based on numerical polynomial fitting analysis is proposed in this paper. This method obtains the dispersion factor by fitting the phase of the interference signal and removes the dispersion mismatch terms, which can significantly improve the system axial resolution compared with non-dispersion compensation. The SD-OCT system is used to measure the axial resolution and signal-to-noise ratio (SNR) at different positions of the optical path difference, and the effectiveness and reliability of the method are verified by analyzing the axial resolution and the SNR of the system before and after the dispersion compensation technology. Finally, we found that the third-order dispersion compensation has a visible optimization effect within the imaging depth of ~1.5 mm.