• 摘要: 基于Siamese网络的视觉跟踪算法是近年来视觉跟踪领域的一类重要方法,其在跟踪速度和精度上都具有良好的性能。但是大多数基于Siamese网络的跟踪算法依赖离线训练模型,缺乏对跟踪器的在线更新。针对这一问题,本文提出了一种基于在线学习的Siamese网络视觉跟踪算法。该算法采用双模板思想,将第一帧中的目标当作静态模板,在后续帧中使用高置信度更新策略获取动态模板;在线跟踪时,利用快速变换学习模型从双模板中学习目标的表观变化,同时根据当前帧的颜色直方图特征计算出搜索区域的目标似然概率图,与深度特征融合,进行背景抑制学习;最后,将双模板获取的响应图进行加权融合,获得最终跟踪结果。在OTB2015、TempleColor128和VOT数据集上的实验结果表明,本文算法的测试结果与近几年的多种主流算法相比均有所提高,在目标形变、相似背景干扰、快速运动等复杂场景下具有较好的跟踪性能。

       

      Abstract: Visual tracking algorithm based on a Siamese network is an important method in the field of visual tracking in recent years, and it has good performance in tracking speed and accuracy. However, most tracking algorithms based on the Siamese network rely on an off-line training model and lack of online update to tracker. In order to solve this problem, we propose an online learning-based visual tracking algorithm for Siamese networks. The algorithm adopts the idea of double template, treats the target in the first frame as a static template, and uses the high confidence update strategy to obtain the dynamic template in the subsequent frame; in online tracking, the fast transform learning model is used to learn the apparent changes of the target from the double template, and the target likelihood probability map of the search area is calculated according to the color histogram characteristics of the current frame, and the background suppression learning is carried out. Finally, the response map obtained by the dual templates is weighted, and the final prediction result is obtained. The experimental results on OTB2015, TempleColor128, and VOT datasets show that the test results of this algorithm are improved compared with the mainstream algorithms in recent years and have better tracking performance in target deformation, similar background interference, fast motion, and other scenarios.