New website getting online, testing
    • 摘要: 光子自旋—轨道相互作用是经典光学所忽略的重要现象,近年来研究发现该现象可通过人工亚波长结构显著增强并进行按需调控。传统超构表面仅支持对称光子自旋—轨道相互作用,存在共轭对称性限制,难以将不同自旋态用于多功能集成、复杂光场调控、信息加密及存储等领域。非对称光子自旋—轨道相互作用能够使左右旋圆偏振光解耦,为突破上述理论和应用限制带来新契机。本文首先介绍了非对称光子自旋—轨道相互作用的原理及实现方法,其次介绍非对称光子自旋—轨道相互作用的代表性应用以及特点,最后对非对称光子自旋—轨道相互作用研究面临的挑战和未来的研究方向进行展望。

       

      Abstract: Photonic spin-orbit interaction is an important phenomenon ignored by classical optics. In recent years, studies have found that this phenomenon can be significantly enhanced by artificial subwavelength structures and adjusted on demand. Traditional metasurfaces only support symmetric photon spin-orbit interactions, and there are limitations in conjugate symmetry, which makes it difficult to use different spin states for multifunctional integration, complex optical field regulation, information encryption, and storage. The asymmetric photon spin-orbit interaction can decouple left and right circularly polarized light, which brings new opportunities for breaking the above-mentioned theoretical and application limitations. This article first introduces the principle and realization method of asymmetric photon spin-orbit interactions, secondly introduces the representative applications and characteristics of asymmetric photon-spin-orbit interactions, and finally outlines the challenges and prospects of asymmetric photon spin-orbit interactions for future research directions.