New website getting online, testing
    • 摘要: 为解决空间反射镜镜体质量和面形精度在轻量化设计过程中会引起相互冲突的问题,针对某型离轴三反光学系统的长条形主反射镜进行了结构优化设计研究,提出了一种基于SiC材料的中心支撑的轻量化结构,同时引入了多目标集成优化方法,以镜体质量(Mass)和面形(RMS)同时作为优化目标,得到一个反射镜最佳结构模型,其质量为2.32 kg,轻量化率达到了73.8%;然后,对反射镜支撑结构进行了结构设计和说明,并对该组件进行了仿真分析,在XYZ三轴方向1 g重力工况下的RMS值分别达到2.5 nm、2.2 nm、7.3 nm,4 ℃均匀温升载荷工况下的RMS值为3.2 nm,远小于设计要求的RMS≤λ/50(λ=632.8 nm),满足设计要求。

       

      Abstract: In order to solve the problem that the mass and the surface figure accuracy of the space reflective mirror are often contradictory in the lightweight design process, a structural optimization design of a lightweight rectangular reflective mirror of an off-axis three-reflection optical system is performed. In this study, a lightweight structure based on the center support of SiC materials is proposed. At the same time, a multi-objective optimization method is introduced. With the RMS value and Mass as the optimization targets at the same time, a mirror optimal structure model is obtained with a mass of 2.32 kg. Compared with the solid mirror, the lightweight ratio is 73.8%. Then the mirror subassembly is designed and the integrated performance of it is simulated. It shows that the RMS value of the mirror reaches respectively 2.5 nm, 2.2 nm and 7.3 nm when gravity load is applied in the directions of X, Y and Z axes. Furthermore, the RMS value is 3.2 nm when the mirror subassembly is under the load condition of uniform temperature rise of 4 ℃, which is far less than the requirement of RMS≤λ/50(λ=632.8 nm). Therefore the data meets the design requirements.