• 摘要: 传统安检方法难以有效识别非金属违禁物品(如陶瓷刀具、液态炸药等),且部分技术存在电离辐射危害的问题。相比之下,毫米波安检技术在有效识别这类危险品的同时,还具备对人体安全的显著特征。本文提出了一种基于YOLOv8s网络改进的毫米波雷达图像目标检测方法HM-YOLO,旨在解决毫米波图片信噪比低、边界模糊及背景复杂等关键挑战。通过设计融合Haar小波变换与卷积注意力模块(CBAM)而形成的Haar小波变换注意力下采样(HWC)模块,替代传统下采样卷积模块,有效优化目标识别性能。同时引入多尺度融合模块(MSFM)与多尺度金字塔池化融合(MPPF)模块,显著增强了对目标细节和边界的辨识能力。实验结果表明,所提方法能有效提高目标识别的精度和鲁棒性,相较基准模型YOLOv8s在人体违禁品WM-SAR数据集上的mAP0.5提升了2.2%,在遥感数据集LS-SSDD上提升了2.7%,并在多项指标中均超越现有的YOLOv8s、YOLOv9s等模型。

       

      Abstract: Conventional security screening methods face difficulties in effectively identifying non-metallic prohibited items (such as ceramic knives and liquid explosives), and some technologies carry risks of ionizing radiation exposure. In contrast, millimeter-wave security screening technology can efficiently detect such hazardous materials while maintaining a significant safety profile for humans. This paper proposes HM-YOLO, an improved millimeter-wave radar image object detection method based on the YOLOv8s network, designed to address critical challenges in millimeter-wave images, including low signal-to-noise ratio, blurred boundaries, and complex backgrounds. By developing a Haar wavelet transform attention downsampling (HWC) module that integrates Haar wavelet transform with a convolutional block attention module (CBAM) to replace conventional downsampling convolution modules, target recognition performance is effectively optimized. Simultaneously, the introduction of the multi-scale fusion module (MSFM) and multi-scale pyramid pooling fusion (MPPF) module significantly enhances the discernment capability for target details and boundaries. Experimental results demonstrate that the proposed method substantially improves target recognition accuracy and robustness, Compared to the baseline model YOLOv8s, our method achieves improvements of 2.2% in mAP0.5 on the human prohibited items WM-SAR dataset and 2.7% on the remote sensing dataset LS-SSDD, while outperforming existing models including YOLOv8s and YOLOv9s across multiple evaluation metrics.