Processing math: 100%
Research progress on on-chip integrated optical isolators
  • Abstract

    As the information age progresses rapidly, the demand for silicon photonic integrated circuits in optical communication, quantum precision measurement, artificial intelligence optical computing, and microwave photonics continues to grow. As an essential component of silicon photonic integrated circuits, optical isolators effectively prevent the backpropagation of optical signals, ensuring system stability and reliability. They are widely used in key technologies such as optical fiber communication, quantum communication, and laser systems. This paper reviews the research progress on on-chip integrated optical isolators, focusing on different implementation methods based on magneto-optic, acousto-optic, electro-optic, and nonlinear optical effects, discussing the advantages and challenges associated with each type. Finally, the paper explores future development directions and potential applications.

    Keywords

  • loading
  • References

    [1]

    Pérez D, Gasulla I, Crudgington L, et al. Multipurpose silicon photonics signal processor core[J]. Nat Commun, 2017, 8(1): 636.

    DOI: 10.1038/s41467-017-00714-1

    CrossRef Google Scholar

    [2]

    恽斌峰, 胡国华, 史上清, 等. 微波光子集成芯片研究进展(特邀)[J]. 光学学报, 2024, 44(15): 1513029.

    DOI: 10.3788/AOS240983

    Yun B F, Hu G H, Shi S Q, et al. Research progress in integrated microwave photonic chips (Invited)[J]. Acta Opt Sin, 2024, 44(15): 1513029.

    DOI: 10.3788/AOS240983

    CrossRef Google Scholar

    [3]

    Bogaerts W, Pérez D, Capmany J, et al. Programmable photonic circuits[J]. Nature, 2020, 586(7828): 207−216.

    DOI: 10.1038/s41586-020-2764-0

    CrossRef Google Scholar

    [4]

    Chi Y L, Yu Y, Gong Q H, et al. High-dimensional quantum information processing on programmable integrated photonic chips[J]. Sci China Information Sci, 2023, 66(8): 180501.

    DOI: 10.1007/s11432-022-3602-0

    CrossRef Google Scholar

    [5]

    Jalas D, Petrov A, Eich M, et al. What is—and what is not—an optical isolator[J]. Nat Photonics, 2013, 7(8): 579−582.

    DOI: 10.1038/nphoton.2013.185

    CrossRef Google Scholar

    [6]

    张子健, 严巍, 秦俊, 等. 集成非互易光学器件(特邀)[J]. 光学学报, 2024, 44(15): 1513020.

    DOI: 10.3788/AOS241073

    Zhang Z J, Yan W, Qin J, et al. Integrated nonreciprocal photonic devices (Invited)[J]. Acta Opt Sin, 2024, 44(15): 1513020.

    DOI: 10.3788/AOS241073

    CrossRef Google Scholar

    View full references list
  • Author Information

  • Copyright

    The copyright belongs to the Institute of Optics and Electronics, Chinese Academy of Sciences, but the article content can be freely downloaded from this website and used for free in academic and research work.
  • About this Article

    DOI: 10.12086/oee.2025.240285
    Cite this Article
    Yang Zongqi, Li Wenxiu, Sun Xin, Huang Xinyao, Yang He, Zhang Hao, Huang Anping, Xiao Zhisong. Research progress on on-chip integrated optical isolators. Opto-Electronic Engineering 52, 240285 (2025). DOI: 10.12086/oee.2025.240285
    Download Citation
    Article History
    • Received Date December 04, 2024
    • Revised Date February 12, 2025
    • Accepted Date February 12, 2025
    • Published Date February 27, 2025
    Article Metrics
    Article Views(1338) PDF Downloads(190)
    Share:
  • Related Articles

  • Device type Year Isolation ratio/dB Insertion loss/dB Isolation bandwidth/nm Polarization Platform Structure Ref
    MO-MZI 2000 4.90@1550 nm TM GaInAsP Waveguide [46]
    2004 9.90@1550 nm 25.0 TM HfO2 Waveguide [47]
    2008 21.0@1559 nm 8.00 10@10 dB TM Si Waveguide [48]
    2012 25.0@1495 nm 9.70 0.40@20 dB TM Si Waveguide [38]
    2013 32.0@1540 nm 22.0 0.50@21 dB TE Si Waveguide [39]
    2014 30.0@1548 nm 13.0 1.0@20 dB TM Si Waveguide [7]
    2016 26.7@1553 nm 33.4 TE Si Waveguide [31]
    2017 17.9@1562 nm 10.0 2.0@10 dB TE a-Si:H Waveguide [49]
    2017 29.0@1523 nm 9.00 18@20 dB TM Si Waveguide [50]
    2019 30.0@1574 nm 5.00 9.0@10 dB TM Si Waveguide [32]
    30.0@1588 nm 9.00 2.0@10 dB TE Si Waveguide
    2020 32.0@1555 nm 2.30 4.0@20 dB TM Si3N4 Waveguide [40]
    30.0@1558 nm 3.00 5.0@20 dB TE Si3N4 Waveguide
    2024 50.0@1550 nm 0.687 72@30 dB TM InP Waveguide [21]
    MO-MR 2011 19.5@1541.6 nm 18.8 0.040@10 dB TM Si Ring [8]
    2011 9.00@1550 nm 0.040@5 dB TM Si Ring [41]
    2016 32.0@1555 nm 2.30 0.60@20 dB TM Si Ring [33]
    2017 11.0@1558 nm 9.70 0.16@5 dB TM Si Ring [51]
    2017 32.0@1555 nm 3.0@20 dB TM Si Ring [43]
    2018 25.0@1550 nm 6.50 40@20 dB TE Si Ring [42]
    2018 40.0@1560.1 nm 3.00 TM GeSbSe Ring [34]
    2019 20.0@1584.8 nm 11.5 TE Si3N4 Ring [32]
    2020 28.0@1570.3 nm 1.00 TM Si3N4 Ring [40]
    MO-MMI 2005 2.9@1550 nm TM InGaAsP Waveguide [9]
    2016 45@1550 nm 0.800 1.60@20 dB TM Si Waveguide [35]
    2018 16@1561 nm 3.40 TE Si Waveguide [36]
    2021 15@1537.3 nm 5.00 2.00@10 dB TE Si Waveguide [52]
    2024 45@1550 nm 2.59 53.5@35 dB TM GaAs Waveguide [53]
    45@1550 nm 2.25 70.0@35 dB TM GaAs Waveguide
    View in article Downloads
  • Device type Year Isolation ratio/dB Insertion loss/dB Isolation bandwidth/nm Polarization Platform Structure Ref
    AO 2018 15.0@1550 nm 0.0088@3 dB TE AlN Ring [59]
    2019 8.00@1540 nm 0.0080@3 dB TE AlN Ring [61]
    2021 12.0@1523.7 nm 0.6 0.80@16 dB TE Si Waveguide [11]
    2021 39.3@1538 nm 1 0.0016@10 dB TE LiNbO3 Ring [10]
    2021 10.0@1545.55 nm 0.1 0.0056@8 dB TE Si3N4 Ring [12]
    View in article Downloads
  • Device typeYearIsolation ratio/dBInsertion loss/dBIsolation bandwidth/nmPolarizationPlatformStructureRef
    EO200530.0@1550 nm8.0GaAs/
    AlGaAs
    Waveguide[64]
    201512.5@1500 nm5.590.0@12.5 dBLiNbO3Waveguide[13]
    20165.390.0@7 dBLiNbO3Waveguide[65]
    202113@1556 nm180.0160@3 dBSiRing[66]
    202348.0@1553.2 nm0.50120@37 dBTELiNbO3Waveguide[14]
    202315.0@1550 nm0.50100@10 dBTELiNbO3Waveguide[15]
    View in article Downloads
  • Device type Year Isolation ratio/dB Insertion loss/dB Isolation bandwidth/nm Polarization Platform Structure Ref
    Kerr 2013 4.0@1582.3 nm 8.00@4 dB Si Waveguide [16]
    2017 30@1550 nm 7.0 Fused silica Ring [17]
    2022 23@1550 nm 4.6 Si3N4 Ring [18]
    17@1550 nm 1.3 Si3N4 Ring
    χ(2) 2020 40@1570 nm 6.6 150@18 dB LiNbO3 Waveguide [20]
    View in article Downloads
[1]

Pérez D, Gasulla I, Crudgington L, et al. Multipurpose silicon photonics signal processor core[J]. Nat Commun, 2017, 8(1): 636.

DOI: 10.1038/s41467-017-00714-1

CrossRef Google Scholar

[2]

恽斌峰, 胡国华, 史上清, 等. 微波光子集成芯片研究进展(特邀)[J]. 光学学报, 2024, 44(15): 1513029.

DOI: 10.3788/AOS240983

Yun B F, Hu G H, Shi S Q, et al. Research progress in integrated microwave photonic chips (Invited)[J]. Acta Opt Sin, 2024, 44(15): 1513029.

DOI: 10.3788/AOS240983

CrossRef Google Scholar

[3]

Bogaerts W, Pérez D, Capmany J, et al. Programmable photonic circuits[J]. Nature, 2020, 586(7828): 207−216.

DOI: 10.1038/s41586-020-2764-0

CrossRef Google Scholar

[4]

Chi Y L, Yu Y, Gong Q H, et al. High-dimensional quantum information processing on programmable integrated photonic chips[J]. Sci China Information Sci, 2023, 66(8): 180501.

DOI: 10.1007/s11432-022-3602-0

CrossRef Google Scholar

[5]

Jalas D, Petrov A, Eich M, et al. What is—and what is not—an optical isolator[J]. Nat Photonics, 2013, 7(8): 579−582.

DOI: 10.1038/nphoton.2013.185

CrossRef Google Scholar

[6]

张子健, 严巍, 秦俊, 等. 集成非互易光学器件(特邀)[J]. 光学学报, 2024, 44(15): 1513020.

DOI: 10.3788/AOS241073

Zhang Z J, Yan W, Qin J, et al. Integrated nonreciprocal photonic devices (Invited)[J]. Acta Opt Sin, 2024, 44(15): 1513020.

DOI: 10.3788/AOS241073

CrossRef Google Scholar

[7]

Shoji Y, Mizumoto T. Magneto-optical non-reciprocal devices in silicon photonics[J]. Sci Technol Adv Mater, 2014, 15(1): 014602.

DOI: 10.1088/1468-6996/15/1/014602

CrossRef Google Scholar

[8]

Bi L, Hu J J, Jiang P, et al. On-chip optical isolation in monolithically integrated non-reciprocal optical resonators[J]. Nat Photonics, 2011, 5(12): 758−762.

DOI: 10.1038/nphoton.2011.270

CrossRef Google Scholar

[9]

Yang J S, Roh J W, Ok S H, et al. An integrated optical waveguide isolator based on multimode interference by wafer direct bonding[J]. IEEE Trans Magn, 2005, 41(10): 3520−3522.

DOI: 10.1109/TMAG.2005.854960

CrossRef Google Scholar

[10]

Sohn D B, Örsel O E, Bahl G. Electrically driven optical isolation through phonon-mediated photonic Autler–Townes splitting[J]. Nat Photonics, 2021, 15(11): 822−827.

DOI: 10.1038/s41566-021-00884-x

CrossRef Google Scholar

[11]

Kittlaus E A, Jones W M, Rakich P T, et al. Electrically driven acousto-optics and broadband non-reciprocity in silicon photonics[J]. Nat Photonics, 2021, 15(1): 43−52.

DOI: 10.1038/s41566-020-00711-9

CrossRef Google Scholar

[12]

Tian H, Liu J Q, Siddharth A, et al. Magnetic-free silicon nitride integrated optical isolator[J]. Nat Photonics, 2021, 15(11): 828−836.

DOI: 10.1038/s41566-021-00882-z

CrossRef Google Scholar

[13]

Dong P. Travelling-wave Mach-Zehnder modulators functioning as optical isolators[J]. Opt Express, 2015, 23(8): 10498−10505.

DOI: 10.1364/OE.23.010498

CrossRef Google Scholar

[14]

Yu M J, Cheng R, Reimer C, et al. Integrated electro-optic isolator on thin-film lithium niobate[J]. Nat Photonics, 2023, 17(8): 666−671.

DOI: 10.1038/s41566-023-01227-8

CrossRef Google Scholar

[15]

Shah M, Briggs I, Chen P K, et al. Visible-telecom tunable dual-band optical isolator based on dynamic modulation in thin-film lithium niobate[J]. Opt Lett, 2023, 48(8): 1978−1981.

DOI: 10.1364/OL.482635

CrossRef Google Scholar

[16]

Saha K, Okawachi Y, Kuzucu O, et al. Chip-scale broadband optical isolation via Bragg scattering four-wave mixing[C]//CLEO: 2013, 2013: 1–2. https://doi.org/10.1364/CLEO_QELS.2013.QF1D.2.

Google Scholar

[17]

Del Bino L, Silver J M, Zhao X, et al. Isolators and circulators based on Kerr nonreciprocity in microresonators[C]//2017 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference, 2017: 1. https://doi.org/10.1109/CLEOE-EQEC.2017.8086519.

Google Scholar

[18]

White A D, Ahn G H, van Gasse K, et al. Integrated passive nonlinear optical isolators[J]. Nat Photonics, 2023, 17(2): 143−149.

DOI: 10.1038/s41566-022-01110-y

CrossRef Google Scholar

[19]

Herrmann J F, Ansari V, Wang J H, et al. Mirror symmetric on-chip frequency circulation of light[J]. Nat Photonics, 2022, 16(8): 603−608.

DOI: 10.1038/s41566-022-01026-7

CrossRef Google Scholar

[20]

Abdelsalam K, Li T F, Khurgin J B, et al. Linear isolators using wavelength conversion[J]. Optica, 2020, 7(3): 209−213.

DOI: 10.1364/OPTICA.385639

CrossRef Google Scholar

[21]

Chen W T, Liu L, Zhao J, et al. On-chip broadband, compact TM mode Mach–Zehnder optical isolator based on InP-on-insulator platforms[J]. Nanomaterials, 2024, 14(8): 709.

DOI: 10.3390/nano14080709

CrossRef Google Scholar

[22]

Potton R J. Reciprocity in optics[J]. Rep Prog Phys, 2004, 67(5): 717−754.

DOI: 10.1088/0034-4885/67/5/R03

CrossRef Google Scholar

[23]

Adam J D, Davis L E, Dionne G F, et al. Ferrite devices and materials[J]. IEEE Trans Microwave Theory Tech, 2002, 50(3): 721−737.

DOI: 10.1109/22.989957

CrossRef Google Scholar

[24]

Dötsch H, Bahlmann N, Zhuromskyy O, et al. Applications of magneto-optical waveguides in integrated optics: review[J]. J Opt Soc Am B, 2005, 22(1): 240−253.

DOI: 10.1364/JOSAB.22.000240

CrossRef Google Scholar

[25]

Karki D, Stenger V, Pollick A, et al. Broadband bias-magnet-free on-chip optical isolators with integrated thin film polarizers[J]. J Lightwave Technol, 2020, 38(4): 827−833.

DOI: 10.1109/JLT.2019.2949377

CrossRef Google Scholar

[26]

Yan W, Yang Y C, Yang W H, et al. On-chip nonreciprocal photonic devices based on hybrid integration of magneto-optical garnet thin films on silicon[J]. IEEE J Sel Top Quantum Electron, 2022, 28(3): 6100515.

DOI: 10.1109/JSTQE.2021.3133445

CrossRef Google Scholar

[27]

Liang X, Xie J L, Deng L J, et al. First principles calculation on the magnetic, optical properties and oxygen vacancy effect of Ce xY3− xFe5O12[J]. Appl Phys Lett, 2015, 106(5): 052401.

DOI: 10.1063/1.4907413

CrossRef Google Scholar

[28]

Zaki A M, Blythe H J, Heald S M, et al. Growth of high quality yttrium iron garnet films using standard pulsed laser deposition technique[J]. J Magn Magn Mater, 2018, 453: 254−257.

DOI: 10.1016/j.jmmm.2017.11.054

CrossRef Google Scholar

[29]

Gomi M, Furuyama H, Abe M. Strong magneto-optical enhancement in highly Ce-substituted iron garnet films prepared by sputtering[J]. J Appl Phys, 1991, 70(11): 7065−7067.

DOI: 10.1063/1.349786

CrossRef Google Scholar

[30]

Mizumoto T, Naito Y. Nonreciprocal propagation characteristics of YIG thin film[J]. IEEE Trans Microwave Theory Tech, 1982, 30(6): 922−925.

DOI: 10.1109/TMTT.1982.1131173

CrossRef Google Scholar

[31]

Shoji Y, Fujie A, Mizumoto T. Silicon waveguide optical isolator operating for TE mode input light[J]. IEEE J Sel Top Quantum Electron, 2016, 22(6): 4403307.

DOI: 10.1109/JSTQE.2016.2574678

CrossRef Google Scholar

[32]

Zhang Y, Du Q Y, Wang C T, et al. Monolithic integration of broadband optical isolators for polarization-diverse silicon photonics[J]. Optica, 2019, 6(4): 473−478.

DOI: 10.1364/OPTICA.6.000473

CrossRef Google Scholar

[33]

Huang D N, Pintus P, Zhang C, et al. Electrically driven and thermally tunable integrated optical isolators for silicon photonics[J]. IEEE J Sel Top Quantum Electron, 2016, 22(6): 4403408.

DOI: 10.1109/JSTQE.2016.2588778

CrossRef Google Scholar

[34]

Du Q Y, Wang C T, Zhang Y F, et al. Monolithic on-chip magneto-optical isolator with 3 dB insertion loss and 40 dB isolation ratio[J]. ACS Photonics, 2018, 5(12): 5010−5016.

DOI: 10.1021/acsphotonics.8b01257

CrossRef Google Scholar

[35]

Shui K Y, Nie L X, Zhang Y, et al. Design of a compact waveguide optical isolator based on multimode interferometers using magneto-optical oxide thin films grown on silicon-on-insulator substrates[J]. Opt Express, 2016, 24(12): 12856−12867.

DOI: 10.1364/OE.24.012856

CrossRef Google Scholar

[36]

Yamaguchi R, Shoji Y, Mizumoto T. Low-loss waveguide optical isolator with tapered mode converter and magneto-optical phase shifter for TE mode input[J]. Opt Express, 2018, 26(16): 21271−21278.

DOI: 10.1364/OE.26.021271

CrossRef Google Scholar

[37]

Auracher F, Witte H H. A new design for an integrated optical isolator[J]. Opt Commun, 1975, 13(4): 435−438.

DOI: 10.1016/0030-4018(75)90140-6

CrossRef Google Scholar

[38]

Ghosh S, Keyvavinia S, Van Roy W, et al. Ce: YIG/Silicon-on-Insulator waveguide optical isolator realized by adhesive bonding[J]. Opt Express, 2012, 20(2): 1839−1848.

DOI: 10.1364/OE.20.001839

CrossRef Google Scholar

[39]

Ghosh S, Keyvaninia S, Shirato Y, et al. Optical isolator for TE polarized light realized by adhesive bonding of Ce: YIG on silicon-on-insulator waveguide circuits[J]. IEEE Photonics J, 2013, 5(3): 6601108.

DOI: 10.1109/JPHOT.2013.2264275

CrossRef Google Scholar

[40]

Yan W, Yang Y C, Liu S Y, et al. Waveguide-integrated high-performance magneto-optical isolators and circulators on silicon nitride platforms[J]. Optica, 2020, 7(11): 1555−1562.

DOI: 10.1364/OPTICA.408458

CrossRef Google Scholar

[41]

Tien M C, Mizumoto T, Pintus P, et al. Silicon ring isolators with bonded nonreciprocal magneto-optic garnets[J]. Opt Express, 2011, 19(12): 11740−11745.

DOI: 10.1364/OE.19.011740

CrossRef Google Scholar

[42]

Huang D N, Pintus P, Bowers J E. Towards heterogeneous integration of optical isolators and circulators with lasers on silicon [Invited][J]. Opt Mater Express, 2018, 8(9): 2471−2483.

DOI: 10.1364/OME.8.002471

CrossRef Google Scholar

[43]

Pintus P, Huang D N, Zhang C, et al. Microring-based optical isolator and circulator with integrated electromagnet for silicon photonics[J]. J Lightwave Technol, 2017, 35(8): 1429−1437.

DOI: 10.1109/JLT.2016.2644626

CrossRef Google Scholar

[44]

Zhuromskyy O, Lohmeyer M, Bahlmann N, et al. Analysis of nonreciprocal light propagation in multimode imaging devices[J]. Opt Quantum Electron, 2000, 32(6): 885−897.

DOI: 10.1023/A:1007078814985

CrossRef Google Scholar

[45]

Furuya K, Nemoto T, Kato K, et al. Athermal operation of a waveguide optical isolator based on canceling phase deviations in a Mach–Zehnder interferometer[J]. J Lightwave Technol, 2016, 34(8): 1699−1705.

DOI: 10.1109/JLT.2015.2505538

CrossRef Google Scholar

[46]

Yokoi H, Mizumoto T, Shinjo N, et al. Demonstration of an optical isolator with a semiconductor guiding layer that was obtained by use of a nonreciprocal phase shift[J]. Appl Opt, 2000, 39(33): 6158−6164.

DOI: 10.1364/AO.39.006158

CrossRef Google Scholar

[47]

Yokoi H, Shoji Y, Shin E, et al. Interferometric optical isolator employing a nonreciprocal phase shift operated in a unidirectional magnetic field[J]. Appl Opt, 2004, 43(24): 4745−4752.

DOI: 10.1364/AO.43.004745

CrossRef Google Scholar

[48]

Shoji Y, Mizumoto T, Yokoi H, et al. Magneto-optical isolator with silicon waveguides fabricated by direct bonding[J]. Appl Phys Lett, 2008, 92(7): 071117.

DOI: 10.1063/1.2884855

CrossRef Google Scholar

[49]

Ishida E, Miura K, Shoji Y, et al. Amorphous-Si waveguide on a garnet magneto-optical isolator with a TE mode nonreciprocal phase shift[J]. Opt Express, 2017, 25(1): 452−462.

DOI: 10.1364/OE.25.000452

CrossRef Google Scholar

[50]

Huang D N, Pintus P, Shoji Y, et al. Integrated broadband Ce: YIG/Si Mach–Zehnder optical isolators with over 100 nm tuning range[J]. Opt Lett, 2017, 42(23): 4901−4904.

DOI: 10.1364/OL.42.004901

CrossRef Google Scholar

[51]

Huang D N, Pintus P, Zhang C, et al. Dynamically reconfigurable integrated optical circulators[J]. Optica, 2017, 4(1): 23−30.

DOI: 10.1364/OPTICA.4.000023

CrossRef Google Scholar

[52]

Liu S Y, Shoji Y, Mizumoto T. Mode-evolution-based TE mode magneto-optical isolator using asymmetric adiabatic tapered waveguides[J]. Opt Express, 2021, 29(15): 22838−22846.

DOI: 10.1364/OE.427914

CrossRef Google Scholar

[53]

Liu L, Chen W T, Zhao J, et al. Two structural designs of broadband, low-loss, and compact TM magneto-optical isolator based on GaAs-on-insulator[J]. Nanomaterials, 2024, 14(5): 400.

DOI: 10.3390/nano14050400

CrossRef Google Scholar

[54]

Tadesse S A, Li M. Sub-optical wavelength acoustic wave modulation of integrated photonic resonators at microwave frequencies[J]. Nat Commun, 2014, 5(1): 5402.

DOI: 10.1038/ncomms6402

CrossRef Google Scholar

[55]

Liu J Q, Tian H, Lucas E, et al. Monolithic piezoelectric control of soliton microcombs[J]. Nature, 2020, 583(7816): 385−390.

DOI: 10.1038/s41586-020-2465-8

CrossRef Google Scholar

[56]

Tadesse S A, Li H, Liu Q Y, et al. Acousto-optic modulation of a photonic crystal nanocavity with Lamb waves in microwave K band[J]. Appl Phys Lett, 2015, 107(20): 201113.

DOI: 10.1063/1.4935981

CrossRef Google Scholar

[57]

Luo Z F, Zhang A X, Huang W X, et al. Aluminum nitride thin film based reconfigurable integrated photonic devices[J]. IEEE J Sel Top Quantum Electron, 2023, 29(3): 9300119.

DOI: 10.1109/JSTQE.2023.3245290

CrossRef Google Scholar

[58]

Shao L B, Yu M J, Maity S, et al. Microwave-to-optical conversion using lithium niobate thin-film acoustic resonators[J]. Optica, 2019, 6(12): 1498−1505.

DOI: 10.1364/OPTICA.6.001498

CrossRef Google Scholar

[59]

Sohn D B, Kim S, Bahl G. Time-reversal symmetry breaking with acoustic pumping of nanophotonic circuits[J]. Nat Photonics, 2018, 12(2): 91−97.

DOI: 10.1038/s41566-017-0075-2

CrossRef Google Scholar

[60]

Kuhn L, Heidrich P F, Lean E G. Optical guided wave mode conversion by an acoustic surface wave[J]. Appl Phys Lett, 1971, 19(10): 428−430.

DOI: 10.1063/1.1653758

CrossRef Google Scholar

[61]

Sohn D B, Bahl G. Direction reconfigurable nonreciprocal acousto-optic modulator on chip[J]. APL Photonics, 2019, 4(12): 126103.

DOI: 10.1063/1.5123497

CrossRef Google Scholar

[62]

Tian H, Liu J Q, Dong B, et al. Hybrid integrated photonics using bulk acoustic resonators[J]. Nat Commun, 2020, 11(1): 3073.

DOI: 10.1038/s41467-020-16812-6

CrossRef Google Scholar

[63]

Wang C, Zhang M, Chen X, et al. Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages[J]. Nature, 2018, 562(7725): 101−104.

DOI: 10.1038/s41586-018-0551-y

CrossRef Google Scholar

[64]

Bhandare S, Ibrahim S K, Sandel D, et al. Novel nonmagnetic 30-dB traveling-wave single-sideband optical isolator integrated in III/V material[J]. IEEE J Sel Top Quantum Electron, 2005, 11(2): 417−421.

DOI: 10.1109/JSTQE.2005.845620

CrossRef Google Scholar

[65]

Dong P, Gui C C. Observation of nonreciprocal transmission in binary phase-shift keying modulation using traveling-wave Mach–Zehnder modulators[J]. Opt Lett, 2016, 41(12): 2723−2726.

DOI: 10.1364/OL.41.002723

CrossRef Google Scholar

[66]

Dostart N, Gevorgyan H, Onural D, et al. Optical isolation using microring modulators[J]. Opt Lett, 2021, 46(3): 460−463.

DOI: 10.1364/OL.408614

CrossRef Google Scholar

[67]

Del Bino L, Silver J M, Stebbings S L, et al. Symmetry breaking of counter-propagating light in a nonlinear resonator[J]. Sci Rep, 2017, 7(1): 43142.

DOI: 10.1038/srep43142

CrossRef Google Scholar

[68]

程亚. 薄膜铌酸锂光电器件与超大规模光子集成(特邀)[J]. 中国激光, 2024, 51(1): 0119001.

DOI: 10.3788/CJL231256

Cheng Y. Thin film lithium niobate electro-optic devices and ultralarge-scale photonic integration (Invited)[J]. Chin J Lasers, 2024, 51(1): 0119001.

DOI: 10.3788/CJL231256

CrossRef Google Scholar

Related Articles
Show full outline

Catalog

    Xiao Zhisong

    1. On this Site
    2. On Google Scholar
    3. On PubMed
    Research progress on on-chip integrated optical isolators
    • Figure  1

      On-chip integrated optical isolators based on different effects[12,15,18,21]

    • Figure  2

      Single-mode waveguide two-port isolator and its scattering matrix

    • Figure  3

      Diagram of traditional bulk magneto-optical isolator device

    • Figure  4

      Wafer-level indirect bonding for the preparation of MO-MZI isolator[38-39]. (a) Schematic top view of the optical isolator composed of a MZI covered with Ce: YIG; (b) Cross-sectional view; (c) Transmission spectra for forward and backward transmission; (d) Schematic of the structure after the addition of PR; (e) Transmission spectra under an applied magnetic field

    • Figure  5

      Wafer-level direct bonding for the fabrication of MO-MZI isolator [7,31]. (a) Schematic diagram of an SOI waveguide optical isolator based on MZI; (b) Microscope image of the fabricated MZI silicon waveguide optical isolator; (c) Transmission spectra for forward and backward transmission; (d) Schematic diagram of the optical isolator integrated with a TE-TM mode converter; (e) Microscope image of the integrated optical isolator on the Si platform; (f) Transmittance between port 1 and port 2 of the integrated optical isolator

    • Figure  6

      MO-MZI isolator fabricated by deposition technology [32,40]. Optical microscope and scanning electron microscope (SEM) images of (a) TM and (b) TE isolators, respectively, with a scale bar of 100 μm; Transmission spectra of (c) TM and (d) TE mode isolators, respectively; (e) SEM image of the cross-section of the fabricated Si3N4/MO waveguide; (f) Simulation of the Ey field distribution of the fundamental TM mode in the Si3N4/MO waveguide; Transmission spectra of (g) TM and (h) TE mode isolators, respectively

    • Figure  7

      MO-MR isolator[8,33]. (a) Working principle of MO-MR optical isolation; (b) Schematic diagram of the non-reciprocal optical resonator structure; (c) Transmission spectra for the TM mode; (d) Perspective view of the isolator device; (e) Microscope image of the on-chip isolator device; (f) Transmission spectra for the TM mode

    • Figure  8

      MO-MR isolator[34,40]. (a) Schematic diagram of a non-reciprocal optical resonator; (b) Top-view optical micrograph of an MO-MR isolator; (c) Transmission spectrum of the isolator; (d) Optical microscope image of a TM-mode optical isolator based on Si3N4 waveguide resonators; (e) Transmission spectrum of the isolator

    • Figure  9

      MO-MMI isolator[35-36]. (a) Schematic diagram of SOI/MMI magneto-optical isolator structure; (b) Transmission spectra of the isolator;(c) Schematic diagram of MO-MMI isolator based on TE mode; (d) Top-view optical micrograph of MO-MMI isolator; (e) Transmission spectra of the isolator

    • Figure  10

      Acousto-optic isolator[59]. (a) Representation of phase matching conditions in frequency-momentum space; (b) Schematic diagram of the phonon-photon interaction region; (c) Forward and backward transmission spectra under perfect phase matching conditions

    • Figure  11

      Acousto-optic isolator[10-12,61]. (a) Schematic diagram of the CFIDT; (b) Cross-section view of the acousto-optic interaction region;(c) Variation graph of isolation and insertion loss with frequency detuning; (d) Schematic diagram of the isolator device; (e) Cross-sectional view of the isolator device; (f) Transmission spectra of the isolator

    • Figure  12

      Electro-optic isolator[13]. (a) Working principle diagram of the MZM-based isolator; (b) Square-wave voltage signal; (c) Forward and backward transmission when modulating the MZM with the voltage shown in Fig. (b); (d) Forward and backward transmission under the driving frequency of 2.75 GHz

    • Figure  13

      Electro-optic isolator[14]. (a) Schematic of the isolator; (b) The illustration of the isolator in frequency domain; (c) Transmission spectra of the isolator

    • Figure  14

      Electro-optic isolator[15]. (a) Schematic of the electro-optic isolator; (b) Transmission spectra of the isolator in forward and backward directions; (c) Calculated isolation ratio for specified parameters at different wavelengths

    • Figure  15

      Nonlinear optical isolator [16,20]. (a) Schematic diagram of light isolation through Bragg scattering for forward-propagating light; (b) Case of backward propagation light; (c) Schematic diagram of the optical isolator. SPF: short-pass filter, LPF: long-pass filter; (d) Transmission spectra of the isolator, with the upper plot for forward-propagating light and the lower plot for backward-propagating light

    • Figure  16

      Nonlinear optical isolator [17-18,65]. (a) Schematic of spontaneous symmetry breaking in a microcavity; (b) Device diagram of a nonreciprocal isolator based on Kerr effect-induced fused silica microring; (c) Graph of the isolator's characteristics as a function of input power; (d) Microscope image of a Si3N4 isolator, scale bar: 100 μm; (e) Measured insertion loss and isolation peak under different coupling rates κ1 and κ2

    • Figure  1
    • Figure  2
    • Figure  3
    • Figure  4
    • Figure  5
    • Figure  6
    • Figure  7
    • Figure  8
    • Figure  9
    • Figure  10
    • Figure  11
    • Figure  12
    • Figure  13
    • Figure  14
    • Figure  15
    • Figure  16
    Research progress on on-chip integrated optical isolators
    • Device type Year Isolation ratio/dB Insertion loss/dB Isolation bandwidth/nm Polarization Platform Structure Ref
      MO-MZI 2000 4.90@1550 nm TM GaInAsP Waveguide [46]
      2004 9.90@1550 nm 25.0 TM HfO2 Waveguide [47]
      2008 21.0@1559 nm 8.00 10@10 dB TM Si Waveguide [48]
      2012 25.0@1495 nm 9.70 0.40@20 dB TM Si Waveguide [38]
      2013 32.0@1540 nm 22.0 0.50@21 dB TE Si Waveguide [39]
      2014 30.0@1548 nm 13.0 1.0@20 dB TM Si Waveguide [7]
      2016 26.7@1553 nm 33.4 TE Si Waveguide [31]
      2017 17.9@1562 nm 10.0 2.0@10 dB TE a-Si:H Waveguide [49]
      2017 29.0@1523 nm 9.00 18@20 dB TM Si Waveguide [50]
      2019 30.0@1574 nm 5.00 9.0@10 dB TM Si Waveguide [32]
      30.0@1588 nm 9.00 2.0@10 dB TE Si Waveguide
      2020 32.0@1555 nm 2.30 4.0@20 dB TM Si3N4 Waveguide [40]
      30.0@1558 nm 3.00 5.0@20 dB TE Si3N4 Waveguide
      2024 50.0@1550 nm 0.687 72@30 dB TM InP Waveguide [21]
      MO-MR 2011 19.5@1541.6 nm 18.8 0.040@10 dB TM Si Ring [8]
      2011 9.00@1550 nm 0.040@5 dB TM Si Ring [41]
      2016 32.0@1555 nm 2.30 0.60@20 dB TM Si Ring [33]
      2017 11.0@1558 nm 9.70 0.16@5 dB TM Si Ring [51]
      2017 32.0@1555 nm 3.0@20 dB TM Si Ring [43]
      2018 25.0@1550 nm 6.50 40@20 dB TE Si Ring [42]
      2018 40.0@1560.1 nm 3.00 TM GeSbSe Ring [34]
      2019 20.0@1584.8 nm 11.5 TE Si3N4 Ring [32]
      2020 28.0@1570.3 nm 1.00 TM Si3N4 Ring [40]
      MO-MMI 2005 2.9@1550 nm TM InGaAsP Waveguide [9]
      2016 45@1550 nm 0.800 1.60@20 dB TM Si Waveguide [35]
      2018 16@1561 nm 3.40 TE Si Waveguide [36]
      2021 15@1537.3 nm 5.00 2.00@10 dB TE Si Waveguide [52]
      2024 45@1550 nm 2.59 53.5@35 dB TM GaAs Waveguide [53]
      45@1550 nm 2.25 70.0@35 dB TM GaAs Waveguide
    • Device type Year Isolation ratio/dB Insertion loss/dB Isolation bandwidth/nm Polarization Platform Structure Ref
      AO 2018 15.0@1550 nm 0.0088@3 dB TE AlN Ring [59]
      2019 8.00@1540 nm 0.0080@3 dB TE AlN Ring [61]
      2021 12.0@1523.7 nm 0.6 0.80@16 dB TE Si Waveguide [11]
      2021 39.3@1538 nm 1 0.0016@10 dB TE LiNbO3 Ring [10]
      2021 10.0@1545.55 nm 0.1 0.0056@8 dB TE Si3N4 Ring [12]
    • Device typeYearIsolation ratio/dBInsertion loss/dBIsolation bandwidth/nmPolarizationPlatformStructureRef
      EO200530.0@1550 nm8.0GaAs/
      AlGaAs
      Waveguide[64]
      201512.5@1500 nm5.590.0@12.5 dBLiNbO3Waveguide[13]
      20165.390.0@7 dBLiNbO3Waveguide[65]
      202113@1556 nm180.0160@3 dBSiRing[66]
      202348.0@1553.2 nm0.50120@37 dBTELiNbO3Waveguide[14]
      202315.0@1550 nm0.50100@10 dBTELiNbO3Waveguide[15]
    • Device type Year Isolation ratio/dB Insertion loss/dB Isolation bandwidth/nm Polarization Platform Structure Ref
      Kerr 2013 4.0@1582.3 nm 8.00@4 dB Si Waveguide [16]
      2017 30@1550 nm 7.0 Fused silica Ring [17]
      2022 23@1550 nm 4.6 Si3N4 Ring [18]
      17@1550 nm 1.3 Si3N4 Ring
      χ(2) 2020 40@1570 nm 6.6 150@18 dB LiNbO3 Waveguide [20]
    • Table  1

      Performance comparison of on-chip integrated optical isolators based on magneto-optic effects

        1/4
    • Table  2

      Performance comparison of on-chip integrated optical isolators based on acousto-optic effects

        2/4
    • Table  3

      Performance comparison of on-chip integrated optical isolators based on electro-optic effects

        3/4
    • Table  4

      Performance comparison of on-chip integrated optical isolators based on nonlinear optical effects

        4/4