Citation: | Deng G S, Guo A R, Cheng X Q, et al. Dual-layer 3D terahertz metamaterial based multifunctional sensor[J]. Opto-Electron Eng, 2024, 51(10): 240164. doi: 10.12086/oee.2024.240164 |
[1] | Shelby R A, Smith D R, Schultz S. Experimental verification of a negative index of refraction[J]. Science, 2001, 292(5514): 77−79. doi: 10.1126/science.1058847 |
[2] | 朱潜, 田翰闱, 蒋卫祥. 电磁超表面对辐射波的调控与应用[J]. 光电工程, 2023, 50(9): 230115. doi: 10.12086/oee.2023.230115 Zhu Q, Tian H W, Jiang W X. Manipulations and applications of radiating waves using electromagnetic metasurfaces[J]. Opto-Electron Eng, 2023, 50(9): 230115. doi: 10.12086/oee.2023.230115 |
[3] | Baqir M A, Choudhury P K. Hyperbolic metamaterial-based optical biosensor for detecting cancer cells[J]. IEEE Photonics Technol Lett, 2023, 35(4): 183−186. doi: 10.1109/LPT.2022.3228943 |
[4] | 马长伟, 马文英, 谭毅, 等. 高Q值THz类EIT超材料及传感特性研究[J]. 光电工程, 2018, 45(11): 180298. doi: 10.12086/oee.2018.180298 Ma C W, Ma W Y, Tan Y, et al. High Q-factor terahertz metamaterial based on analog of electromagnetically induced transparency and its sensing characteristics[J]. Opto-Electron Eng, 2018, 45(11): 180298. doi: 10.12086/oee.2018.180298 |
[5] | 胡维东, 杜响, 刘思玉, 等. 基于准连续域束缚态介质超表面的光微流折射率传感研究[J]. 光电工程, 2023, 50(9): 230124. doi: 10.12086/oee.2023.230124 Hu W D, Du X, Liu S Y, et al. Optofluidic refractometric sensor based on quasi-bound states in the continuum in all-dielectric metasurface[J]. Opto-Electron Eng, 2023, 50(9): 230124. doi: 10.12086/oee.2023.230124 |
[6] | Hu T Q, Pan T S, Guo D J, et al. Omnidirectional configuration of stretchable strain sensor enabled by the strain engineering with chiral Auxetic metamaterial[J]. ACS Nano, 2023, 17(21): 22035−22045. doi: 10.1021/acsnano.3c08624 |
[7] | Du X X, Mao H P, Yan Y T, et al. Study on the spectral characteristics of plant growth regulators based on the structure difference of terahertz metamaterial sensor[J]. IEEE Sensors J, 2022, 22(14): 14065−14074. doi: 10.1109/JSEN.2022.3180335 |
[8] | Banerjee S, Dutta P, Basu S, et al. A new design of a terahertz metamaterial absorber for gas sensing applications[J]. Symmetry, 2023, 15(1): 24. doi: 10.3390/sym15010024 |
[9] | Saadeldin A S, Hameed M F O, Elkaramany E M A, et al. Highly sensitive terahertz metamaterial sensor[J]. IEEE Sensors J, 2019, 19(18): 7993−7999. doi: 10.1109/JSEN.2019.2918214 |
[10] | Federici J F, Schulkin B, Huang F, et al. THz imaging and sensing for security applications - explosives, weapons and drugs[J]. Semicond Sci Technol, 2005, 20(7): S266−S280. doi: 10.1088/0268-1242/20/7/018 |
[11] | Li Z R, Zhong M, Zang L Y, et al. Dual-mode metamaterial absorber for independent sweat and temperature sensing[J]. J Electron Mater, 2023, 52(6): 4106−4116. doi: 10.1007/s11664-023-10388-9 |
[12] | Cocker T L, Jelic V, Hillenbrand R, et al. Nanoscale terahertz scanning probe microscopy[J]. Nat Photonics, 2021, 15(8): 558−569. doi: 10.1038/s41566-021-00835-6 |
[13] | He Z H, Li L Q, Ma H Q, et al. Graphene-based metasurface sensing applications in terahertz band[J]. Results Phys, 2021, 21: 103795. doi: 10.1016/j.rinp.2020.103795 |
[14] | Ahmadivand A, Gerislioglu B, Ahuja R, et al. Terahertz plasmonics: the rise of toroidal metadevices towards immunobiosensings[J]. Mater Today, 2020, 32: 108−130. doi: 10.1016/j.mattod.2019.08.002 |
[15] | Wang W J, Sun K X, Xue Y, et al. A review of terahertz metamaterial sensors and their applications[J]. Opt Commun, 2024, 556: 130266. doi: 10.1016/j.optcom.2024.130266, |
[16] | Vivek A, Shambavi K, Alex Z C. A review: metamaterial sensors for material characterization[J]. Sens Rev, 2019, 39(3): 417−432. doi: 10.1108/SR-06-2018-0152 |
[17] | Deng X X, Shen Y C, Liu B W, et al. Terahertz metamaterial sensor for sensitive detection of citrate salt solutions[J]. Biosensors (Basel), 2022, 12(6): 408. doi: 10.3390/bios12060408 |
[18] | Li J, Zhou Y D, Peng F W, et al. High-FOM temperature sensing based on Hg-EIT-like liquid metamaterial unit[J]. Nanomaterials, 2022, 12(9): 1395. doi: 10.3390/nano12091395 |
[19] | 田小永, 尹丽仙, 李涤尘. 三维超材料制造技术现状与趋势[J]. 光电工程, 2017, 44(1): 69−76. doi: 10.3969/j.issn.1003-501X.2017.01.006 Tian X Y, Yin L X, Li D C. Current situation and trend of fabrication technologies for three-dimensional metamaterials[J]. Opto-Electron Eng, 2017, 44(1): 69−76. doi: 10.3969/j.issn.1003-501X.2017.01.006 |
[20] | Zhang Y P, Li T T, Zeng B B, et al. A graphene based tunable terahertz sensor with double Fano resonances[J]. Nanoscale, 2015, 7(29): 12682−12688. doi: 10.1039/C5NR03044G |
[21] | 王鑫, 王俊林. 基于三维开口谐振环阵列和微流通道的太赫兹超材料吸收体传感器[J]. 光学学报, 2020, 40(19): 1904001. doi: 10.3788/AOS202040.1904001 Wang X, Wang J L. Terahertz metamaterial absorber sensor based on three-dimensional split-ring resonator array and microfluidic channel[J]. Acta Opt Sin, 2020, 40(19): 1904001. doi: 10.3788/AOS202040.1904001 |
[22] | Fu Y P, Xu X C, Lin Y S. Actively programmable MEMS-based racetrack-shaped terahertz metamaterial[J]. J Appl Phys, 2022, 131(11): 115301. doi: 10.1063/5.0069625 |
[23] | Lin Y S, Liao S Q, Liu X Y, et al. Tunable terahertz metamaterial by using three-dimensional double split-ring resonators[J]. Opt Laser Technol, 2019, 112: 215−221. doi: 10.1016/j.optlastec.2018.11.020 |
[24] | Almawgani A H M, Surve J, Parmar T, et al. A graphene-metasurface-inspired optical sensor for the heavy metals detection for efficient and rapid water treatment[J]. Photonics, 2023, 10(1): 56. doi: 10.3390/PHOTONICS10010056 |
[25] | Yang J, Qi L M, Li B, et al. A terahertz metamaterial sensor used for distinguishing glucose concentration[J]. Results Phys, 2021, 26: 104332. doi: 10.1016/J.RINP.2021.104332 |
[26] | Deng G S, Guo A R, Kou Z F, et al. High-sensitivity terahertz sensor for liquid medium detection using dual-layer metasurfaces[J]. IEEE Trans Terahertz Sci Technol, 2024, 14(1): 57−63. doi: 10.1109/TTHZ.2023.3318794 |
[27] | Guo A R, Kou Z F, Yang J, et al. Electromagnetic anapole-inspired micro-displacement sensor using dual-layer terahertz metasurfaces with micrometer-level sensitivity and centimeter-level range[J]. IEEE Trans Instrum Meas, 2024, 73: 6006709. doi: 10.1109/TIM.2024.3398126 |
Sensors are increasingly valued for their versatility as a crucial part of integrated devices. With the advancement of technology facing diverse environmental challenges, there is a growing need for multifunctional integration in the sensing field. Metamaterials are the combination of artificial periodic arrays with subwavelength resonant structures, and terahertz metamaterials sensors have a wide range of applications in biomacromolecule sensing and other trace precision detection fields due to their high penetration, specific fingerprint, low photon energy, high sensitivity and high resolution. At present, researchers in this field are increasingly demanding the highly sensitive performance of metamaterial sensors. Traditional metamaterial sensors have already enabled various sensing applications, but most of these sensors are designed for single detection targets and functions. Integrating sensors with multiple detection functions remains one of the challenges in the current research on metamaterial sensors. Moreover, the existing reported metamaterial sensors are primarily based on two-dimensional metasurfaces. A common issue with these sensors is their relatively low sensitivity and resolution, which limits the application of metamaterial sensors in high-precision detection.
In this paper, a terahertz metamaterial multifunctional sensor based on the coupling of a two-layer 3D resonant structure with high sensitivity is introduced. The sensor consists of an upper and lower polyimide film substrate, a graphite layer attached to the lower polyimide film substrate, and a periodic double-layer 3D toothed coupling resonant structure between the graphite layer and the upper polyimide film substrate, which consists of a symmetric mountain-shaped structure in the lower layer and a symmetric concave structure in the upper layer. The three-dimensional metamaterial can achieve multifunctional measurements with high sensitivity: the refractive index change of the liquid medium can be detected with a high sensitivity by measuring the resonant frequency of the structure. Therefore, it is possible to detect the liquid medium with such a design. Meanwhile, in terms of micro displacement sensing, a high micro displacement measurement sensitivity can be realized in both the z-axis and y-axis directions, respectively. Compared with other reported metamaterial sensors, the proposed design achieves multifunctional sensing ability. Moreover, it also outperforms metamaterial sensors based on two-dimensional metasurfaces in terms of sensitivity and resolution. The 3D metamaterial sensor proposed in this paper paves a new way for the design of functionally integrated sensor with high sensitivity at terahertz frequencies.
The reflection spectrum of the intermediate dielectric layer with equivalent refractive index n=1
(a) Electric field distribution; (b) Magnetic field distribution; (c) Surface current distribution of the three-dimensional metamaterial resonant structure
Effect of the tooth alignment depth of the double-layer stereo resonant structure on the resonant reflection spectra
(a) Reflectance spectra of the dual-layer 3D structure for refractive index sensing, and (b) the fitting line
Reflectance spectra of the dual-layer 3D structure for (a) the z-axis micro-displacement sensing and (b) its fitted sensitivity. (c) Reflectance spectra of the y-axis micro-displacement sensing and (d) its fitted sensitivity