Citation: | Zhang B Z, Liu K, Liu K, et al. Research on dynamic variance threshold algorithm based on distributed fiber vibration sensor system[J]. Opto-Electron Eng, 2023, 50(2): 220205. doi: 10.12086/oee.2023.220205 |
[1] | Juarez J C, Maier E W, Choi K N, et al. Distributed fiber-optic intrusion sensor system[J]. J Lightwave Technol, 2005, 23(6): 2081−2087. doi: 10.1109/JLT.2005.849924 |
[2] | Tan D J, Tian X Z, Sun W, et al. An oil and gas pipeline pre-warning system based on Φ-OTDR[J]. Proc SPIE, 2014, 9157: 91578W. doi: 10.1117/12.2054698 |
[3] | 吴慧娟, 陈忠权, 吕立冬, 等. 基于DOFVS的新型压力输水管道泄漏在线监测方法[J]. 仪器仪表学报, 2017, 38(1): 159−165. doi: 10.3969/j.issn.0254-3087.2017.01.021 Wu H J, Chen Z Q, Lv L D, et al. Novel pressurized water pipe leak monitoring method based on the distributed optical fiber vibration sensor[J]. Chin J Sci Instrument, 2017, 38(1): 159−165. doi: 10.3969/j.issn.0254-3087.2017.01.021 |
[4] | Bao X Y, Zhou D P, Baker C, et al. Recent development in the distributed fiber optic acoustic and ultrasonic detection[J]. J Lightwave Technol, 2017, 35(16): 3256−3267. doi: 10.1109/JLT.2016.2612060 |
[5] | Duckworth G L, Ku E M. OptaSense distributed acoustic and seismic sensing using COTS fiber optic cables for infrastructure protection and counter terrorism[J]. Proc SPIE, 2013, 8711: 87110G. doi: 10.1117/12.2017712 |
[6] | Taylor H F, Lee C E. Apparatus and method for fiber optic intrusion sensing: 5194847[P]. 1993-03-16. |
[7] | 梁可桢, 潘政清, 周俊, 等. 一种基于相位敏感光时域反射计的多参量振动传感器[J]. 中国激光, 2012, 39(8): 0805004. doi: 10.3788/CJL201239.0805004 Liang K Z, Pan Z Q, Zhou J, et al. Multi-parameter vibration detection system based on phase sensitive optical time domain reflectometer[J]. Chin J Lasers, 2012, 39(8): 0805004. doi: 10.3788/CJL201239.0805004 |
[8] | Martins H F, martin-Lopez S, Corredera P, et al. High visibility phase-sensitive optical time domain reflectometer for distributed sensing of ultrasonic waves[J]. Proc SPIE, 2013, 8794: 87943F. doi: 10.1117/12.2026081 |
[9] | 孙振世. 基于分布式光纤振动传感的压力水管泄漏监测应用研究[D]. 成都: 电子科技大学, 2016. Sun Z S. Study on leakage monitor of pressure water pipe based on distributed optical fiber vibration sensing technology[D]. Chengdu: University of Electronic Science and Technology of China, 2016. |
[10] | 李信宇, 车前, 熊玉川, 等. 基于弱光栅阵列增强的Φ-OTDR传感系统性能分析[J]. 光电子·激光, 2019, 30(7): 673−677. doi: 10.16136/j.joel.2019.07.0002 Li X Y, Che Q, Xiong Y C, et al. The analysis of improved phase-OTDR sensing system employing weak fiber Bragg grating array[J]. J Optoelectron·Laser, 2019, 30(7): 673−677. doi: 10.16136/j.joel.2019.07.0002 |
[11] | 吴慧娟, 刘欣雨, 饶云江. 基于Φ-OTDR的光纤分布式传感信号处理及应用[J]. 激光与光电子学进展, 2021, 58(13): 1306003−51. doi: 10.3788/LOP202158.1306003 Wu H J, Liu X Y, Rao Y J. Processing and application of fiber optic distributed sensing signal based on Φ-OTDR[J]. Laser Optoelectron Prog, 2021, 58(13): 1306003−51. doi: 10.3788/LOP202158.1306003 |
[12] | 褚庆昕, 陈付昌. 多频带通滤波器技术(英文)[J]. 华南理工大学学报(自然科学版), 2012, 40(10): 219−226. doi: 10.3969/j.issn.1000-565X.2012.10.031 Chu Q X, Chen F C. Multiband bandpass filter technologies[J]. J South China Univ Technol (Nat Sci Ed), 2012, 40(10): 219−226. doi: 10.3969/j.issn.1000-565X.2012.10.031 |
[13] | 张燕君, 刘文哲, 付兴虎, 等. 基于EMD-AWPP和HOSA-SVM算法的分布式光纤振动入侵信号的特征提取与识别[J]. 光谱学与光谱分析, 2016, 36(2): 577−582. doi: 10.3964/j.issn.1000-0593(2016)02-0577-06 Zhang Y J, Liu W Z, Fu X H, et al. An extraction and recognition method of the distributed optical fiber vibration signal based on EMD-AWPP and HOSA-SVM algorithm[J]. Spectrosc Spectral Anal, 2016, 36(2): 577−582. doi: 10.3964/j.issn.1000-0593(2016)02-0577-06 |
[14] | 袁晓月, 谭中伟. 基于φ-OTDR的分布式光纤传感技术的现状与发展[J]. 光通信技术, 2018, 42(2): 23−26. doi: 10.13921/j.cnki.issn1002-5561.2018.02.007 Yuan X Y, Tan Z W. Status and development of distributed optical fiber sensing technology based on φ-OTDR[J]. Opt Commun Technol, 2018, 42(2): 23−26. doi: 10.13921/j.cnki.issn1002-5561.2018.02.007 |
[15] | 金燊, 宋伟, 杨纯, 等. 120 km长距离分布式光纤振动传感系统[J]. 光通信研究, 2021(3): 20−24. doi: 10.13756/j.gtxyj.2021.03.005 Jin S, Song W, Yang C, et al. 120 km long-distance distributed optical fiber vibration sensing system[J]. Study Opt Commun, 2021(3): 20−24. doi: 10.13756/j.gtxyj.2021.03.005 |
[16] | 卢斌, 王照勇, 郑汉荣, 等. 高空间分辨率长距离分布式光纤振动传感系统[J]. 中国激光, 2017, 44(10): 1015001. doi: 10.3788/CJL201744.1015001 Lu B, Wang Z Y, Zheng H R, et al. High spatial resolution long distance distributed optical fiber vibration sensing system[J]. Chin J Lasers, 2017, 44(10): 1015001. doi: 10.3788/CJL201744.1015001 |
[17] | Chow D M, Yang Z S, Soto M A, et al. Distributed forward Brillouin sensor based on local light phase recovery[J]. Nat Commun, 2018, 9(1): 2990. doi: 10.1038/s41467-018-05410-2 |
[18] | 潘亮, 刘琨, 江俊峰, 等. 分布式光纤振动和温度双物理量传感系统[J]. 中国激光, 2018, 45(1): 0110002. doi: 10.3788/CJL201845.0110002 Pan L, Liu K, Jiang J F, et al. Distributed fiber-optic vibration and temperature sensing system[J]. Chin J Lasers, 2018, 45(1): 0110002. doi: 10.3788/CJL201845.0110002 |
[19] | Liu S Q, Yu F H, Hong R, et al. Advances in phase-sensitive optical time-domain reflectometry[J]. Opto-Electron Adv, 2022, 5(3): 200078. doi: 10.29026/oea.2022.200078 |
[20] | Zan W, Wang Y, Liu X, et al. Envelope extraction for vibration locating in coherent φ-OTDR[J]. Sensors, 2022, 22(3): 1197. doi: 10.3390/s22031197 |
[21] | Li S, Qin Z G, Liu Z J, et al. Long-distance φ-OTDR with a flexible frequency response based on time division multiplexing[J]. Opt Express, 2021, 29(21): 32833−32841. doi: 10.1364/OE.435883 |
[22] | Zhang M, Wang S, Zheng Y W, et al. Enhancement for φ-OTDR performance by using narrow linewidth light source and signal processing[J]. Photonic Sens, 2016, 6(1): 58−62. doi: 10.1007/s13320-015-0283-7 |
[23] | Peng F, Wu H, Jia X H, et al. Ultra-long high-sensitivity φ-OTDR for high spatial resolution intrusion detection of pipelines[J]. Opt Express, 2014, 22(11): 13804−13810. doi: 10.1016/j.optlaseng.2015.08.010. |
[24] | 肖文哲, 程静, 张大伟, 等. 用于光纤干涉传感器的高稳定PGC解调技术[J]. 光电工程, 2022, 49(3): 210368. doi: 10.12086/oee.2022.210368 Xiao W Z, Cheng J, Zhang D W, et al. High stability PGC demodulation technique for fiber-optic interferometric sensor[J]. Opto-Electron Eng, 2022, 49(3): 210368. doi: 10.12086/oee.2022.210368 |
[25] | 张永康, 尚盈, 王晨, 等. 分布式光纤入侵信号检测与识别[J]. 光电工程, 2021, 48(3): 200254. doi: 10.12086/oee.2021.200254 Zhang Y K, Shang Y, Wang C, et al. Detection and recognition of distributed optical fiber intrusion signal[J]. Opto-Electron Eng, 2021, 48(3): 200254. doi: 10.12086/oee.2021.200254 |
[26] | Liu T, Li H, He T, et al. Ultra-high resolution strain sensor network assisted with an LS-SVM based hysteresis model[J]. Opto-Electron Adv, 2021, 4(5): 200037. doi: 10.29026/oea.2021.200037 |
Distributed optical fiber vibration sensing system (DVS) is a kind of vibration detection system which uses optical fiber as a sensing element to sense the vibration. Through OTDR, one or more vibration points can be sensed and located in space at the same time.Compared with the traditional vibration monitoring system, it has the advantages of no electromagnetic interference, long detection distance, high positioning accuracy, continuous multi-point distributed measurement, and so on. It is suitable for real-time accurate measurement of the vibratio-related events such as long-distance, omni-directional, multi-point illegal invasion, and structural damage. At present, the main optical principle of the distributed optical fiber sensing system is based on Rayleigh scattering, Raman scattering, and Brillouin scattering. Rayleigh scattering is the main component of light scattering in the process of optical fiber transmission, which has high scattering light intensity. The time and intensity of the backscattered light produced by modulated pulse laser signal at each point in the whole process of optical fiber are different. The change of disturbance in the whole process of optical fiber can be characterized by the change of the intensity of Rayleigh scattering light measured by the detector with time.
In the long-distance DVS applications, due to the attenuation of Rayleigh backscattering in the process of long-distance transmission of light, the detection signal is weak and the perception sensitivity is high, which leads to the problem of high false alarm rate in the complex ground life scene and unknown buried conditions. Thus, the DVS long-distance detection algorithm in the complex environment can not meet the practical application requirements.
Therefore, aiming at the problem of long-distance complex noise interference and signal attenuation, combined with the characteristics that variance analysis can detect the vibration quickly and effectively in one-dimensional signal, this paper proposes a dynamic variance threshold algorithm, and uses the parallel programming technology to improve the response speed of the system. The signal preprocessed by the band-pass filter is processed by variance processing, Gaussian blur, threshold peak seeking, and accurate center of gravity. The problem of long response time caused by the attenuation of Rayleigh scattering signal and the large amount of computation in the long-distance DVS detection is solved. The parallel programming technology is used to improve the operation speed by 184%, so as to quickly and accurately determine the location of the disturbance.The difference between the man-made disturbance and the noise on a 39 km long optical fiber is experimentally studied, and the influence of the noise is eliminated by the dynamic variance algorithm.The response time of the system is 1 second, the spatial resolution is 20 meters, and the positioning error is less than 0.1%.
Algorithm flow chart
Structural diagram
Signal characteristics of two quiet positions and their corresponding positions in the spectrum (abscissa is position/m, ordinate is frequency/Hz)
The data of 1000 frames at the disturbance location and the corresponding position of its spectrum (abscissa is position/m, ordinate is frequency/Hz)
Gaussian blur. (a) Before blurring; (b) Average blurring with a width of 20; (c) Gaussian fuzzy. The standard deviation sigma of Gaussian fuzzy is equal to 3, and the width is 21 points
Test site
Raw data
Variance treatment
Disturbance prescription difference curve
Peak seeking algorithm