Yang G, Guo Y H, Pu M B, et al. Miniature computational spectral detection technology based on correlation value selection[J]. Opto-Electron Eng, 2022, 49(10): 220130. doi: 10.12086/oee.2022.220130
Citation: Yang G, Guo Y H, Pu M B, et al. Miniature computational spectral detection technology based on correlation value selection[J]. Opto-Electron Eng, 2022, 49(10): 220130. doi: 10.12086/oee.2022.220130

Miniature computational spectral detection technology based on correlation value selection

    Fund Project: National Natural Science Foundation of China (61875253, 61975210), National Key Research and Development Program (SQ2021YFA1400121), and the Chinese Academy of Sciences Youth Innovation Promotion Association (2019371)
More Information
  • Benefiting from the advantages of small size, compact structure, and easy integration, miniature spectral detection technologies based on metasurfaces have been widely studied in recent years. However, the existing designs of the metasurfaces-based miniature spectral detection system usually lack the quantitative analysis of the relationship between the average correlation values of the metasurfaces transmission spectra and the reconstruction quality. The random selection method used in the existing design process cannot guarantee the optimal reconstruction quality. This paper quantitatively analyzes the relationship between the average correlation value of the metasurfaces transmission spectra and reconstruction quality, and proposes a design methodology for miniature spectral detection based on metasurfaces. In addition, this paper also verifies the spectral properties of the metasurfaces-based miniature spectral detection technology. Compared with the random selection design methodology, the proposed methodology can improve the reconstruction fidelity of broadband spectral and image signals.
  • 加载中
  • [1] Shaw G A, Burke H H K. Spectral imaging for remote sensing[J]. Lincoln Lab J, 2003, 14(1): 3−28.

    Google Scholar

    [2] Greaves J S, Richards A M S, Bains W, et al. Phosphine gas in the cloud decks of Venus[J]. Nat Astron, 2021, 5(7): 655−664. doi: 10.1038/s41550-020-1174-4

    CrossRef Google Scholar

    [3] Bahauddin S M, Bradshaw S J, Winebarger A R. The origin of reconnection-mediated transient brightenings in the solar transition region[J]. Nat Astron, 2021, 5(3): 237−245. doi: 10.1038/s41550-020-01263-2

    CrossRef Google Scholar

    [4] Vilaseca M, Mercadal R, Pujol J, et al. Characterization of the human iris spectral reflectance with a multispectral imaging system[J]. Appl Opt, 2008, 47(30): 5622−5630. doi: 10.1364/AO.47.005622

    CrossRef Google Scholar

    [5] Panasyuk S V, Yang S, Faller D V, et al. Medical hyperspectral imaging to facilitate residual tumor identification during surgery[J]. Cancer Biol Ther, 2007, 6(3): 439−446. doi: 10.4161/cbt.6.3.4018

    CrossRef Google Scholar

    [6] Askoura M L, Vaudelle F, L'Huillier J P. Multispectral measurement of scattering-angular light distribution in apple skin and flesh samples[J]. Appl Opt, 2016, 55(32): 9217−9225. doi: 10.1364/AO.55.009217

    CrossRef Google Scholar

    [7] Davis C O. Applications of hyperspectral imaging in the coastal ocean[J]. Proc SPIE, 2002, 4816: 33−41. doi: 10.1117/12.453791

    CrossRef Google Scholar

    [8] Cao X, Yue T, Lin X, et al. Computational snapshot multispectral cameras: toward dynamic capture of the spectral world[J]. IEEE Signal Proc Mag, 2016, 33(5): 95−108. doi: 10.1109/MSP.2016.2582378

    CrossRef Google Scholar

    [9] Wagadarikar A, John R, Willett R, et al. Single disperser design for coded aperture snapshot spectral imaging[J]. Appl Opt, 2008, 47(10): B44−B51. doi: 10.1364/AO.47.000B44

    CrossRef Google Scholar

    [10] Gehm M E, John R, Brady D J, et al. Single-shot compressive spectral imaging with a dual-disperser architecture[J]. Opt Express, 2007, 15(21): 14013−14027. doi: 10.1364/OE.15.014013

    CrossRef Google Scholar

    [11] Wagadarikar A A, Pitsianis N P, Sun X B, et al. Spectral image estimation for coded aperture snapshot spectral imagers[J]. Proc SPIE, 2008, 7076: 707602. doi: 10.1117/12.795545

    CrossRef Google Scholar

    [12] Ma X L, Pu M B, Li X, et al. All-metallic wide-angle metasurfaces for multifunctional polarization manipulation[J]. Opto-Electron Adv, 2019, 2(3): 180023. doi: 10.29026/oea.2019.180023

    CrossRef Google Scholar

    [13] Zhang Y B, Liu H, Cheng H, et al. Multidimensional manipulation of wave fields based on artificial microstructures[J]. Opto-Electron Adv, 2020, 3(11): 200002. doi: 10.29026/oea.2020.200002

    CrossRef Google Scholar

    [14] Yue Z, Li J T, Li J, et al. Terahertz metasurface zone plates with arbitrary polarizations to a fixed polarization conversion[J]. Opto-Electron Sci, 2022, 1(3): 210014. doi: 10.29026/oes.2022.210014

    CrossRef Google Scholar

    [15] Gao H, Fan X H, Xiong W, et al. Recent advances in optical dynamic meta-holography[J]. Opto-Electron Adv, 2021, 4(11): 210030. doi: 10.29026/oea.2021.210030

    CrossRef Google Scholar

    [16] Larouche S, Tsai Y J, Tyler T, et al. Infrared metamaterial phase holograms[J]. Nat Mater, 2012, 11(5): 450−454. doi: 10.1038/nmat3278

    CrossRef Google Scholar

    [17] Zhang F, Pu M B, Gao P, et al. Simultaneous full-color printing and holography enabled by centimeter-scale plasmonic metasurfaces[J]. Adv Sci, 2020, 7(10): 1903156. doi: 10.1002/advs.201903156

    CrossRef Google Scholar

    [18] Faraji-Dana M S, Arbabi E, Arbabi A, et al. Compact folded metasurface spectrometer[J]. Nat Commun, 2018, 9(1): 4196. doi: 10.1038/s41467-018-06495-5

    CrossRef Google Scholar

    [19] Horie Y, Arbabi A, Arbabi E, et al. Wide bandwidth and high resolution planar filter array based on DBR-metasurface-DBR structures[J]. Opt Express, 2016, 24(11): 11677−11682. doi: 10.1364/OE.24.011677

    CrossRef Google Scholar

    [20] Redding B, Liew S F, Sarma R, et al. Compact spectrometer based on a disordered photonic chip[J]. Nat Photonics, 2013, 7(9): 746−751. doi: 10.1038/nphoton.2013.190

    CrossRef Google Scholar

    [21] Dou K H, Xie X, Pu M B, et al. Off-axis multi-wavelength dispersion controlling metalens for multi-color imaging[J]. Opto-Electron Adv, 2020, 3(4): 190005. doi: 10.29026/oea.2020.190005

    CrossRef Google Scholar

    [22] Khorasaninejad M, Chen W T, Devlin R C, et al. Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging[J]. Science, 2016, 352(6290): 1190−1194. doi: 10.1126/science.aaf6644

    CrossRef Google Scholar

    [23] Wang Y L, Fan Q B, Xu T. Design of high efficiency achromatic metalens with large operation bandwidth using bilayer architecture[J]. Opto-Electron Adv, 2021, 4(1): 200008. doi: 10.29026/oea.2021.200008

    CrossRef Google Scholar

    [24] Wang H T, Hao C L, Lin H, et al. Generation of super-resolved optical needle and multifocal array using graphene oxide metalenses[J]. Opto-Electron Adv, 2021, 4(2): 200031. doi: 10.29026/oea.2021.200031

    CrossRef Google Scholar

    [25] 周毅, 梁高峰, 温中泉, 等. 光学超分辨平面超构透镜研究进展[J]. 光电工程, 2021, 48(12): 210399. doi: 10.12086/oee.2021.210399

    CrossRef Google Scholar

    Zhou Y, Liang G F, Wen Z Q, et al. Recent research progress in optical super-resolution planar meta-lenses[J]. Opto-Electron Eng, 2021, 48(12): 210399. doi: 10.12086/oee.2021.210399

    CrossRef Google Scholar

    [26] 申益佳, 谢鑫, 蒲明博, 等. 基于传输相位和几何相位协同调控的消色差超透镜[J]. 光电工程, 2020, 47(10): 200237. doi: 10.12086/oee.2020.200237

    CrossRef Google Scholar

    Shen Y J, Xie X, Pu M B, et al. Achromatic metalens based on coordinative modulation of propagation phase and geometric phase[J]. Opto-Electron Eng, 2020, 47(10): 200237. doi: 10.12086/oee.2020.200237

    CrossRef Google Scholar

    [27] Fang N, Lee H, Sun C, et al. Sub-diffraction-limited optical imaging with a silver superlens[J]. Science, 2005, 308(5721): 534−537. doi: 10.1126/science.1108759

    CrossRef Google Scholar

    [28] Luo X G, Ishihara T. Surface plasmon resonant interference nanolithography technique[J]. Appl Phys Lett, 2004, 84(23): 4780−4782. doi: 10.1063/1.1760221

    CrossRef Google Scholar

    [29] Butt H, Montelongo Y, Butler T, et al. Carbon nanotube based high resolution holograms[J]. Adv Mater, 2012, 24(44): OP331−OP336. doi: 10.1002/adma.201202593

    CrossRef Google Scholar

    [30] Wang Z, Yi S, Chen A, et al. Single-shot on-chip spectral sensors based on photonic crystal slabs[J]. Nat Commun, 2019, 10(1): 1020. doi: 10.1038/s41467-019-08994-5

    CrossRef Google Scholar

    [31] Xiong J, Cai X S, Cui K Y, et al. Dynamic brain spectrum acquired by a real-time ultraspectral imaging chip with reconfigurable metasurfaces[J]. Optica, 2022, 9(5): 461−468. doi: 10.1364/OPTICA.440013

    CrossRef Google Scholar

    [32] Bao J, Bawendi M G. A colloidal quantum dot spectrometer[J]. Nature, 2015, 523(7558): 67−70. doi: 10.1038/nature14576

    CrossRef Google Scholar

    [33] Zhu Y B, Lei X, Wang K X, et al. Compact CMOS spectral sensor for the visible spectrum[J]. Photonics Res, 2019, 7(9): 961−966. doi: 10.1364/PRJ.7.000961

    CrossRef Google Scholar

    [34] Zhang W Y, Song H Y, He X, et al. Deeply learned broadband encoding stochastic hyperspectral imaging[J]. Light Sci Appl, 2021, 10(1): 108. doi: 10.1038/s41377-021-00545-2

    CrossRef Google Scholar

    [35] Yang Z Y, Albrow-Owen T, Cui H X, et al. Single-nanowire spectrometers[J]. Science, 2019, 365(6457): 1017−1020. doi: 10.1126/science.aax8814

    CrossRef Google Scholar

    [36] Meng J J, Cadusch J J, Crozier K B. Detector-only spectrometer based on structurally colored silicon nanowires and a reconstruction algorithm[J]. Nano Lett, 2020, 20(1): 320−328. doi: 10.1021/acs.nanolett.9b03862

    CrossRef Google Scholar

    [37] Kwak Y, Park S M, Ku Z, et al. A pearl spectrometer[J]. Nano Lett, 2021, 21(2): 921−930. doi: 10.1021/acs.nanolett.0c03618

    CrossRef Google Scholar

    [38] 李遂贤. 基于多目标优化的多光谱相机的宽带滤色片选取[J]. 光学学报, 2020, 40(4): 0411001. doi: 10.3788/AOS202040.0411001

    CrossRef Google Scholar

    Li S X. Broadband filter selection for multispectral camera based on multi-objective optimization[J]. Acta Opt Sin, 2020, 40(4): 0411001. doi: 10.3788/AOS202040.0411001

    CrossRef Google Scholar

    [39] Li S X. Filter selection for optimizing the spectral sensitivity of broadband multispectral cameras based on maximum linear independence[J]. Sensors, 2018, 18(5): 1455. doi: 10.3390/s18051455

    CrossRef Google Scholar

    [40] Li S X, Zhang L Y. Optimal sensitivity design of multispectral camera via broadband absorption filters based on compressed sensing[C]//3rd International Symposium of Space Optical Instruments and Applications, 2017: 329–339. doi: 10.1007/978-3-319-49184-4_33.

    Google Scholar

    [41] Li S X. Superiority of optimal broadband filter sets under lower noise levels in multispectral color imaging[J]. Color Res Appl, 2021, 46(4): 783−790. doi: 10.1002/col.22630

    CrossRef Google Scholar

    [42] Zhang S, Dong Y H, Fu H Y, et al. A spectral reconstruction algorithm of miniature spectrometer based on sparse optimization and dictionary learning[J]. Sensors, 2018, 18(2): 644. doi: 10.3390/s18020644

    CrossRef Google Scholar

    [43] Donoho D L. Compressed sensing[J]. IEEE Trans Inf Theory, 2006, 52(4): 1289−1306. doi: 10.1109/TIT.2006.871582

    CrossRef Google Scholar

    [44] Baraniuk R. Compressive sensing[C]//42nd Annual Conference on Information Sciences and Systems, 2008. doi: 10.1109/CISS.2008.4558479.

    Google Scholar

    [45] Figueiredo M A T, Nowak R D, Wright S J. Gradient projection for sparse reconstruction: application to compressed sensing and other inverse problems[J]. IEEE J Sel Top Signal Proc, 2007, 1(4): 586−597. doi: 10.1109/JSTSP.2007.910281

    CrossRef Google Scholar

    [46] Arad B, Ben-Shahar O. Sparse recovery of hyperspectral signal from natural RGB images[C]//Proceedings of the 14th European Conference on Computer Vision, 2016: 19–34. doi: 10.1007/978-3-319-46478-7_2.

    Google Scholar

  • Spectral imaging detection technology has been widely used in many fields, such as remote sensing, medical diagnosis, food safety testing, environmental monitoring, and other fields due to its advantages of accurate and non-contact detection. However, conventional spectral imaging systems usually suffer from the large volume, long sampling time, and low energy efficiency. Metasurface is an artificial two-dimensional material that can flexibly control the amplitude, phase and spectrum of electromagnetic waves. Metasurfaces have been used in spectral detection, holography, metalens, and other fields due to its compact structure and the capacity to flexibly control the electromagnetic waves. Benefiting from the advantages of small size, compact structure, and easy integration, miniature spectral detection technologies based on metasurfaces have been widely studied in recent years. The miniature spectral detection systems usually utilize the broadband spectral properties of metasurfaces and compressive sensing algorithms to achieve computational spectral imaging detection with lightweight. However, the existing designs of the metasurfaces-based miniature spectral detection system usually lack the quantitative analysis of the relationship between the average correlation values of the metasurfaces transmission spectra and the reconstruction quality. The random selection method used in the existing design process cannot guarantee the optimal reconstruction quality. Different from the traditional methodology of using the maximum linear independence criterion to select the broadband filters, this paper quantitatively analyzes the relationship between the average correlation value of the metasurfaces transmission spectra and reconstruction quality, and proposes a methodology for miniature spectral detection based on metasurfaces, which provides a route for the subsequent design and optimization of the metasurfaces. In order to verify the advantages of the proposed methodology, ten broadband spectra and image spectra were selected from many spectra. Compared with the random selection design methodology, the proposed methodology can improve the reconstruction fidelity of broadband spectral and image signals. The fidelity of the broadband spectral reconstruction can be increased by 13.17%, and the reconstruction fidelity of the image spectral signals has also been improved to a certain extent. In addition, this paper also verifies the spectral properties of the metasurfaces-based miniature spectral detection technology, showing that the system has good reconstruction effect for broadband, narrowband and image spectral signals, and has the advantages of compact structure and small volume.

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(7)

Tables(1)

Article Metrics

Article views() PDF downloads() Cited by()

Access History

Other Articles By Authors

Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint