Effects of Sn doping on Ga2O3-based solar blind photodetectors
  • Abstract

    In order to improve the performance of Ga2O3-based photodetectors (PDs), Sn-doped gallium oxide thin films were prepared on sapphire substrates by molecular beam epitaxy system. The influence of Sn doping on both Ga2O3 crystal structure and photoelectric properties of metal-semiconductor-metal (MSM) PDs were investigated. X-ray diffraction shows that gallium oxide films change from single crystal to polycrystalline phase when increasing the growth temperature of SnO2. When 254 nm and 42 μW/cm2 light was used, the responsivity of Sn-doped Ga2O3 photodetectors reached 444.51 A/W. Compared with the undoped β-Ga2O3 PDs, the photocurrent and responsivity of Sn-doped PDs were almost increased by two orders of magnitude, suggesting the improvement on PD performance. Spectral response shows that the cut-off wavelength of Sn-doped PDs changes from 252 nm to 274 nm by increasing Sn dose, which reveals an efficient way toward the development of the UV PDs focus on longer wavelengths. However, Sn doping also introduces impurity levels, resulting in poor time response of the MSM PDs.

    Keywords

  • 近年来,紫外区域的光电探测技术在民用及军事领域中得到了广泛应用,引起了人们的高度重视。日盲紫外是指波长在200 nm~280 nm的紫外波段(UV-C)。由于该波段的紫外线被大气中的臭氧层强烈吸收,难以达到地球表面,因此被叫做“日盲紫外”。地球表面没有太阳光的日盲紫外干扰,同时日盲紫外也不会由地面传输到大气层外,因此日盲紫外技术具有抗干扰能力强的先天优势[]。日盲紫外的应用非常广泛,可用于燃烧过程检测、臭氧检测、天基紫外预警、导弹告警及太空探索等领域[-],具有可观的发展前景。

    结果表明,Sn掺杂有效地增加了氧化镓日盲紫外探测器的光电流,提高了探测器的响应度,是一种提高探测器性能的有效方法。另外,Sn的引入导致了探测器光谱响应的红移,可以有效调控紫外响应的波长。但由于引入杂质能级,导致器件时间响应特性变差。

    制备日盲紫外探测器时,通常选用对日盲紫外敏感的半导体材料。硅基二极管是紫外光电探测最常用的器件。但硅的禁带宽度较小(1.1 eV~1.3 eV),使用时需要昂贵的高通滤光器和磷光体来避免可见光波段的响应,因此限制了其在紫外探测领域的应用[-]。AlGaN是一种优选的日盲紫外半导体材料,使用AlGaN可以制备性能优良的雪崩光电二极管(APD),然而,具有高增益的日盲AlGaN APD的开发仍然受到低p型掺杂效率和外延层的高位错密度的限制[]。β-氧化镓(β-Ga2O3)薄膜是一种新型的日盲紫外光电材料,具有带隙宽(~4.9 eV)、理化性质稳定的先天优势,非常适合制备日盲紫外光电探测器。目前,越来越多的研究人员将研究重点放到氧化镓基半导体材料上,许多高性能的β-Ga2O3薄膜日盲紫外探测器已经被报道[-]

    氧化镓作为一种宽禁带半导体材料,制备过程中会引入O空位等缺陷,使β-Ga2O3表现出n型半导体的特性。但由于氧化镓薄膜的迁移率较低,制备出的氧化镓薄膜通常表现出较差的导电性,影响日盲紫外探测器的性能。为了制备高性能的β-Ga2O3日盲紫外探测器,石雄林等[]利用铝纳米粒子在氧化镓薄膜表面激发产生局域表面等离子体共振,增强了纳米粒子附近的电场,也增强了薄膜对日盲紫外的吸收,从而提高了探测器的性能。除此之外,掺杂也是一种常见的提高半导体导电性的方法。已有文献报道的氧化镓掺杂元素包括Si[]、Ti[]、Sn[]、Zn[]和Ge[]等。在这些元素中,Sn的原子半径与Ga相似,非常适合进行Ga2O3的掺杂。另外,SnO2的带隙为3.6 eV,Sn掺杂还可以调节β-Ga2O3薄膜的带隙。Orita[]课题组在2002年利用脉冲激光沉积(pulsed laser deposition,PLD)的方法生长Sn掺杂Ga2O3薄膜; 2014年,国内山东大学Du等[]使用金属有机化学气相沉积法(metal-organic chemical vapor deposition,MOCVD)制备出低电阻率的Sn掺杂氧化镓同质外延薄膜。2018年,Usui等[]使用浮区法(float-zone,FZ)生长出Sn掺杂氧化镓单晶。但是使用分子束外延方法制备Sn掺杂氧化镓薄膜方面的报道较少,对其器件方面的研究亦是寥寥无几。分子束外延(molecular beam epitaxy,MBE)技术是一种新型的半导体薄膜生长方法,使用MBE方法制备出的薄膜晶体完整性好、组分与厚度均匀准确,具有非常广泛的应用前景。本文尝试使用分子束外延方法在蓝宝石衬底上制备Sn掺杂氧化镓薄膜并制成金属-半导体-金属(metal-semiconductor- metal,MSM)结构日盲紫外探测器,研究Sn掺杂对日盲紫外探测器性能的影响。

    Figure 1. The schematic diagram of the Ga2O3 MSM solar-blind ultraviolet PD
    Full-Size Img PowerPoint

    The schematic diagram of the Ga2O3 MSM solar-blind ultraviolet PD

    外延生长的衬底材料为c面蓝宝石(Al2O3)基片,外延生长之前,分别使用丙酮、酒精和去离子水将蓝宝石基片用超声清洗三分钟。清洗之后的蓝宝石基片用氮气枪吹干,并放在120 ℃加热台上加热三分钟,去除残留的去离子水。之后,将蓝宝石衬底放入分子束外延设备,外延生长Sn掺杂氧化镓薄膜。考虑到Sn金属作为源在生长过程中会氧化[],影响薄膜生长速率,所以本文选用SnO2粉末作为Sn源进行掺杂Ga2O3生长。生长时分别保持SnO2源温度为750 ℃、850 ℃、900 ℃,生长室真空度保持为266.644×10-5 Pa,外延生长时间为3 h,薄膜厚度约为120 nm。同时生长一组未掺杂β-Ga2O3薄膜作为对照组。生长完成后,取出样品,放在氮气柜中保存。最后,使用外延生长的Sn掺杂Ga2O3薄膜制备MSM型日盲紫外光电探测器。步骤包括:光刻图形、电子束蒸发沉积Ti/Au电极和剥离去胶。器件示意图如图 1所示,Ti电极厚度为20 nm,Au电极厚度为100 nm,叉指宽度为5 μm,指长200 μm,叉指间距为5 μm,数量为20对。

    外延生长的Ga2O3薄膜表征以及器件的性能将通过以下测试方法进行分析。薄膜结晶质量通过X射线衍射仪(Bede D1)进行检测,使用的Cu靶Kα射线,λ=0.154 nm; 器件的电流-电压特性和瞬态响应使用Agilent 4155B设备进行测试,测试时使用波长为254 nm的低压汞灯作为紫外光源; 紫外探测器光谱响应系统(Zolix DSR100-X150AUV)用来测试器件在不同波长下的光谱响应。

    R=IphIdarkPλS,
    Figure 4. Spectral response of the Ga2O3 MSM PDs on a semilogarithmic scale
    Full-Size Img PowerPoint

    Spectral response of the Ga2O3 MSM PDs on a semilogarithmic scale

    Sn掺杂Ga2O3探测器的瞬态响应特性如图 5所示,紫外光源的开关时间各为20 s。从图 5(a)可以发现,掺杂与未掺杂日盲紫外探测器都可以被254 nm的紫外光调制,测试过程中所有器件都表现出优异的重复性和稳定性。施加紫外光照的情况下,Sn掺杂Ga2O3探测器的光电流远远大于未掺杂探测器。图 5(b)为不同Ga2O3日盲紫外探测器单个周期归一化瞬态响应的对比图。由图 5(b)可知,Sn掺杂β-Ga2O3探测器的上升时间(最大光电流值的10%上升到90%所需的时间)小于未掺杂器件,然而Sn掺杂器件的衰减时间(最大光电流值的90%衰减到10%所需的时间)明显增大,从未掺杂器件的0.65 s增加到Sn源900 ℃掺杂器件的6.4 s。如图 5(c)5(d)所示,使用双指数弛豫方程可以很好地拟合器件的瞬态响应曲线,拟合方程如下:

    式中:I0为施加紫外光照或无紫外光照时电流的稳定值,AB为常数,t为时间,τ为驰豫时间常数,τrτd分别表示图 5(c)5(d)中上升沿和下降沿的弛豫时间常数。未掺杂器件的下降时间弛豫常数为0.30 s,Sn源温度900 ℃器件的下降时间可以拟合为两个部分,分别是0.34 s和6.20 s,其中快速响应部分是由光源的开关引起的载流子浓度变化导致的,慢速响应部分与薄膜的缺陷相关[, ],移除光照后,被缺陷束缚的载流子将会被释放并复合,但通常这个过程所需时间较长。衰减时间的延长表明Sn的掺杂在β-Ga2O3薄膜中引入大量缺陷,这些缺陷可以作为陷阱阻碍载流子的复合,导致器件恢复时间延长。缺陷的存在虽然可以增加探测器的内部增益,提高探测器的响应度,但也会使器件的持续光电导(PPC)效应加强,时间响应变差。因此,探测器的增益和时间响应通常需要折衷考虑。

    其中:IphIdark分别表示探测器在外加偏压的光、暗电流; Pλ表示紫外光源的光功率密度,本次实验中使用的低压汞灯光功率密度为42 μW/cm2; S代表光电探测器的有效光照面积。经计算,图 1所示的日盲紫外光电探测器的有效光照面积为3.8×10-4 cm2。外加电压为20 V时,未掺杂Ga2O3薄膜器件探测器的响应度为8.11 A/W,Sn源750 ℃、850 ℃、900 ℃对应的器件响应度分别为127.89 A/W、244.45 A/W以及444.51 A/W。如图 3(d)所示,相比于未掺杂器件,Sn掺杂器件的响应度提高了两个量级。文献[]报道的在SiC衬底上生长Ga2O3薄膜,并由此制备的MSM型日盲紫外探测器的光谱响应度只有2.6 A/W,Sn掺杂之后的器件响应度产生明显的增加。光电流和响应度增大的主要原因是Sn掺杂薄膜导电性的提高。由于Sn4+的离子半径大于Ga3+,因此,Sn的引入导致了一定程度的晶格膨胀,提高了载流子的迁移率,使Sn掺杂氧化镓薄膜导电性提高; 另外,Sn的掺杂在氧化镓薄膜中引入了更多的缺陷能级,这些缺陷可以作为陷阱,使探测器产生较大的内部增益。缺陷导致内部增益的增加机制如下[]:以n型半导体为例,多数载流子为电子,其迁移率较高,渡越时间短于载流子寿命,少数载流子(空穴)运动速度慢,其渡越时间比载流子寿命长,缺陷的存在可以束缚空穴,在这种情况下,电子被快速地扫出探测器,体内空穴多余,另一个电极需提供电子维持电中性,通过这种行为,电子在载流子寿命时间范围内可以来回多次穿过探测器,从而提高了增益,同时提高探测器的光电流和响应度。

    图 2是未掺杂β-Ga2O3薄膜和不同SnO2源温度下生长的Ga2O3薄膜的X射线衍射(X-ray diffraction,XRD)θ~2θ扫描图谱。从图中可以看到,衍射峰强最高的峰对应的2θ角为41.7°,该峰为蓝宝石基片对应的(0006)衍射峰。未掺杂Ga2O3薄膜以及Sn掺杂之后的外延薄膜都出现了对应于β-Ga2O3(-201)、(-402)、和(-603)晶面的衍射峰(PDF#43-1012),对应的2θ角度分别是18.9°、38.3°和59.1°,表明晶体的生长方向是沿着(-201)方向生长。未掺杂薄膜对应的各峰位峰强较强,没有其他杂峰,且每个面的衍射峰半高宽都很小,晶面取向性好。表明未掺杂薄膜为单晶,但是随着Sn掺杂的引入,衍射图出现2θ=30.3°与60.1°的峰,根据粉末衍射联合委员会数据库分析,这两个峰分别是β-Ga2O3的(110)与(113)峰,Sn掺杂之后的薄膜逐渐生长为多晶。当Sn源温度为900 ℃时,β-Ga2O3(113)峰强高于β-Ga2O3(-603)峰,表明随着Sn掺杂量的增加,晶体的结晶质量变差。晶体结构的转变是由于Sn4+(0.069 nm)的离子半径稍大于Ga3+(0.062 nm),因此Ga3+离子被Sn4+离子替代,或者Sn4+离子作为间隙原子出现时,β相氧化镓的晶体结构受到影响,结晶质量变差。

    图 3是不同Sn掺杂Ga2O3 MSM型探测器的电流电压特性曲线,测试使用的紫外光源波长为254 nm。图 3(a)为对数坐标下日盲紫外探测器的暗电流对比图,Sn掺杂Ga2O3基MSM日盲紫外探测器的暗电流高于未掺杂β-Ga2O3紫外探测器; 图 3(b)为对数坐标下Ga2O3日盲紫外光电探测器的光电流,由图 3(b)可知,Sn源温度为900 ℃的Sn掺杂器件光电流相比于未掺杂β-Ga2O3增加了两个数量级; 图 3(c)为线性坐标下无紫外光照的电流电压特性曲线,相比于Sn源温度750 ℃的器件,Sn源温度850 ℃、900 ℃时暗电流逐渐呈线性增长的趋势,表现出欧姆接触的特性。外加电压为20 V时,未掺杂β-Ga2O3日盲探测器的暗电流为1.55 nA,而SnO2源温度750 ℃、850 ℃、900 ℃对应的Sn掺杂Ga2O3日盲探测器暗电流分别为96.89 nA、142.83 nA以及258.25 nA。相比于未掺杂器件,Sn掺杂紫外探测器的暗电流提升了两个数量级,表明Sn掺杂明显增加了Ga2O3薄膜的导电性。在β-Ga2O3薄膜中,Sn4+的存在状态包括以下两种:一种是作为替代原子占据晶格中Ga3+的位置; 另外一种则是Sn4+作为间隙原子存在于晶格中。间隙原子的存在会导致原子的平衡位置被破坏而产生晶格畸变。以上两种情况Sn都会因价电子的电离而产生电子,使氧化镓薄膜载流子浓度提高,从而降低薄膜的电阻率。

    Figure 3. The current-voltage (I-V) of the Ga2O3 MSM PDs with different SnO2 temperatures. (a) Idark−V characteristics on asemilogarithmic scale; (b) I−V characteristics under 254 nm DUV illumination on a semilogarithmic scale; (c) Idark−V characteristics on a linear scale; (d) Responsivity of Sn-doped Ga2O3 MSM PDs with different SnO2 temperatures
    Full-Size Img PowerPoint

    The current-voltage (I-V) of the Ga2O3 MSM PDs with different SnO2 temperatures. (a) IdarkV characteristics on asemilogarithmic scale; (b) I−V characteristics under 254 nm DUV illumination on a semilogarithmic scale; (c) IdarkV characteristics on a linear scale; (d) Responsivity of Sn-doped Ga2O3 MSM PDs with different SnO2 temperatures

    图 4展现了20 V偏压下,不同Sn掺杂Ga2O3探测器在对数坐标中的光谱响应特性。在日盲紫外波段,Sn掺杂Ga2O3探测器的光响应度远远大于未掺杂β-Ga2O3器件; 未掺杂器件在245 nm处达到了光响应度的峰值,而Sn源750 ℃对应的器件响应度峰值对应波长为255 nm,850 ℃、900 ℃则在265 nm处达到峰值。器件的-3 dB截止波长由未掺杂器件的252 nm增加到Sn源900 ℃的274 nm,表明Sn掺杂的器件对紫外光响应产生了红移,但仍然处于日盲紫外区。响应谱截止波长的变化主要是由于Sn掺杂在Ga2O3薄膜中引入杂质能级,影响了氧化镓的禁带宽度。另外,SnO2的禁带宽度为3.6 eV,小于氧化镓的禁带宽度4.9 eV。因此,通过调节Sn掺杂来调节紫外响应的波长是一种有效的方法。由图 4可知,Sn掺杂之后的器件在280 nm以上的波段,也产生了较大的响应。相比于未掺杂器件,掺杂之后的器件在中紫外、近紫外的波段响应度远高于未掺杂器件,因此Sn掺杂会造成日盲紫外探测精确度的一些损失。通过前置信号放大器等装置可以提高探测器的处理精度,降低噪声,解决信噪比较大的问题。

    Figure 5. Time-dependent photoresponse of the Ga2O3 MSM PDs with different SnO2 temperature. (a) Response for multicycles on a linear scale; (b) Normalized transient response on a linear scale; (c) Experimental and fitted curves of rise and decay processes for β-Ga2O3 PDs; (d) Sn doped β-Ga2O3 PDs with SnO2 temperature of 900 ℃
    Full-Size Img PowerPoint

    Time-dependent photoresponse of the Ga2O3 MSM PDs with different SnO2 temperature. (a) Response for multicycles on a linear scale; (b) Normalized transient response on a linear scale; (c) Experimental and fitted curves of rise and decay processes for β-Ga2O3 PDs; (d) Sn doped β-Ga2O3 PDs with SnO2 temperature of 900 ℃

    I=I0+Aexp(tτ1)+Bexp(tτ2),

    由光电流和暗电流计算得到的响应度对比如图 3(d)所示。响应度是判断光电探测器性能的一个重要指标,响应度的大小体现了光电转换器件对外加光信号的光电转换能力。计算公式如下:

    Figure 2. XRD spectra of β-Ga2O3 and Sn doped β-Ga2O3 films deposited at different SnO2 temperatures
    Full-Size Img PowerPoint

    XRD spectra of β-Ga2O3 and Sn doped β-Ga2O3 films deposited at different SnO2 temperatures

    本文研究了利用分子束外延生长了Sn掺杂Ga2O3薄膜,并成功制备了Ga2O3基日盲紫外探测器。Sn的掺杂使β-Ga2O3发生相变,出现了β-Ga2O3与ε-Ga2O3共存相。Sn掺杂可以有效提高探测器的光电流和响应度。主要原因是由于Sn掺杂使β-Ga2O3薄膜发生晶格膨胀,使薄膜迁移率增加; 另一方面,Sn掺杂之后在氧化镓薄膜中引入缺陷能级,这些缺陷可以作为陷阱,阻碍载流子的复合,增大器件的内部增益。同时,Sn掺杂使器件光谱响应产生红移,表明Sn掺杂可以有效调节紫外响应的波长。但是Sn掺杂也会使器件暗电流偏大,不利于信号的放大与检测。另外,由于Sn的引入,导致β-Ga2O3薄膜出现杂质能级,阻碍载流子的复合,导致时间响应变差。

  • References

    王保华, 李妥妥, 郑国宪.日盲紫外探测系统研究[J].激光与光电子学进展, 2014, 51(2): 022202.

    DOI: 10.3788/LOP51.022202

    Wang B H, Li T T, Zheng G X. Research of solar blind ultraviolet detection system[J]. Laser & Optoelectronics Progress, 2014, 51(2): 022202.

    DOI: 10.3788/LOP51.022202

    CrossRef Google Scholar

    Giza R H, Acevedo P A, Bliss J D. Ultraviolet scene simulation for missile approach warning system testing[J]. Proceedings of SPIE, 1997, 3084: 282–291.

    DOI: 10.1117/12.280958

    CrossRef Google Scholar

    Brown D M, Downey E, Kretchmer J, et al. SiC flame sensors for gas turbine control systems[J]. Solid-State Electronics, 1998, 42(5): 755–760.

    DOI: 10.1016/S0038-1101(97)00260-8

    CrossRef Google Scholar

    Sang L W, Liao M Y, Sumiya M. A comprehensive review of semiconductor ultraviolet photodetectors: from thin film to one-dimensional nanostructures[J]. Sensors, 2013, 13(8): 10482–10518.

    DOI: 10.3390/s130810482

    CrossRef Google Scholar

    Razeghi M. Short-wavelength solar-blind detectors-status, prospects, and markets[J]. Proceedings of the IEEE, 2002, 90(6): 1006–1014.

    DOI: 10.1109/JPROC.2002.1021565

    CrossRef Google Scholar

    Dong K X, Chen D J, Zhang Y Y, et al. AlGaN solar-blind APD with low breakdown voltage[J]. Opto-Electronic Engineering, 2017, 44(4): 405–409.

    DOI: 10.3969/j.issn.1003-501X.2017.04.004

    CrossRef Google Scholar

    View full references list
  • Cited by

    Periodical cited type(4)

    1. 杨瑞,杨斯铄,钱凌轩. 氧分压对a-Ga_2O_3基日盲紫外光电探测器性能的影响研究. 光电工程. 2024(06): 106-115 . 本站查看
    2. Lijun Li,Chengkun Li,Shaoqing Wang,Qin Lu,Yifan Jia,Haifeng Chen. Preparation of Sn-doped Ga_2O_3 thin films and their solar-blind photoelectric detection performance. Journal of Semiconductors. 2023(06): 69-78 .
    3. 肖演,杨斯铄,程凌云,周游,钱凌轩. 非晶氧化镓基日盲紫外探测器的研究进展. 光电工程. 2023(06): 4-23 . 本站查看
    4. 翁蕾舒. 超宽禁带半导体Ga2O3微电子研究分析. 产业科技创新. 2019(33): 93-95 .

    Other cited types(9)

  • Author Information

  • Copyright

    The copyright belongs to the Institute of Optics and Electronics, Chinese Academy of Sciences, but the article content can be freely downloaded from this website and used for free in academic and research work.
  • About this Article

    DOI: 10.12086/oee.2019.190011
    Cite this Article
    Hou Shuang, Liu Qing, Xing Zhiyang, Qian Lingxuan, Liu Xingzhao. Effects of Sn doping on Ga2O3-based solar blind photodetectors. Opto-Electronic Engineering 46, 190011 (2019). DOI: 10.12086/oee.2019.190011
    Download Citation
    Article History
    • Received Date January 10, 2019
    • Revised Date March 13, 2019
    • Published Date October 17, 2019
    Article Metrics
    Article Views(11106) PDF Downloads(3656)
    Share:
  • Related Articles

王保华, 李妥妥, 郑国宪.日盲紫外探测系统研究[J].激光与光电子学进展, 2014, 51(2): 022202.

DOI: 10.3788/LOP51.022202

Wang B H, Li T T, Zheng G X. Research of solar blind ultraviolet detection system[J]. Laser & Optoelectronics Progress, 2014, 51(2): 022202.

DOI: 10.3788/LOP51.022202

CrossRef Google Scholar

Giza R H, Acevedo P A, Bliss J D. Ultraviolet scene simulation for missile approach warning system testing[J]. Proceedings of SPIE, 1997, 3084: 282–291.

DOI: 10.1117/12.280958

CrossRef Google Scholar

Brown D M, Downey E, Kretchmer J, et al. SiC flame sensors for gas turbine control systems[J]. Solid-State Electronics, 1998, 42(5): 755–760.

DOI: 10.1016/S0038-1101(97)00260-8

CrossRef Google Scholar

Sang L W, Liao M Y, Sumiya M. A comprehensive review of semiconductor ultraviolet photodetectors: from thin film to one-dimensional nanostructures[J]. Sensors, 2013, 13(8): 10482–10518.

DOI: 10.3390/s130810482

CrossRef Google Scholar

Razeghi M. Short-wavelength solar-blind detectors-status, prospects, and markets[J]. Proceedings of the IEEE, 2002, 90(6): 1006–1014.

DOI: 10.1109/JPROC.2002.1021565

CrossRef Google Scholar

Dong K X, Chen D J, Zhang Y Y, et al. AlGaN solar-blind APD with low breakdown voltage[J]. Opto-Electronic Engineering, 2017, 44(4): 405–409.

DOI: 10.3969/j.issn.1003-501X.2017.04.004

CrossRef Google Scholar

Qian L X, Wu Z H, Zhang Y Y, et al. Ultrahigh-responsivity, rapid-recovery, solar-blind photodetector based on highly nonstoichiometric amorphous gallium oxide[J]. ACS Photonics, 2017, 4(9): 2203–2211.

DOI: 10.1021/acsphotonics.7b00359

CrossRef Google Scholar

Guo D Y, Liu H, Li P G, et al. Zero-power-consumption solar-blind photodetector based on β‑Ga2O3/NSTO heterojunction[J]. ACS Applied Materials & Interfaces, 2017, 9(2): 1619–1628.

DOI: 10.1021/acsami.6b13771

CrossRef Google Scholar

Qian L X, Zhang H F, Lai P T, et al. High-sensitivity β-Ga2O3 solar-blind photodetector on high-temperature pretreated c-plane sapphire substrate[J]. Optical Materials Express, 2017, 7(10): 3643–3653.

DOI: 10.1364/OME.7.003643

CrossRef Google Scholar

Oh S, Jung Y, Mastro M A, et al. Development of solar-blind photodetectors based on Si-implanted β-Ga2O3[J]. Optics Express, 2015, 23(22): 28300–28305.

DOI: 10.1364/OE.23.028300

CrossRef Google Scholar

Ravadgar P, Horng R H, Yao S D, et al. Effects of crystallinity and point defects on optoelectronic applications of β-Ga2O3 epilayers[J]. Optics Express, 2013, 21(21): 24599–24610.

DOI: 10.1364/OE.21.024599

CrossRef Google Scholar

石雄林, 刘宏宇, 侯爽, 等.表面等离子体在氧化镓基紫外探测器中的应用[J].光电工程, 2018, 45(2): 170728.

DOI: 10.12086/oee.2018.170728

Shi X L, Liu H Y, Hou S, et al. The applications of surface plasmons in Ga2O3 ultraviolet photodetector[J]. Opto-Electronic Engineering, 2018, 45(2): 170728.

DOI: 10.12086/oee.2018.170728

CrossRef Google Scholar

Ueda N, Hosono H, Waseda R, et al. Synthesis and control of conductivity of ultraviolet transmitting β-Ga2O3 single crystals[J]. Applied Physics Letters, 1997, 70(26): 3561–3563.

DOI: 10.1063/1.119233

CrossRef Google Scholar

Matsumoto T, Aoki M, Kinoshita A, et al. Absorption and reflection of vapor grown single crystal platelets of β-Ga2O3[J]. Japanese Journal of Applied Physics, 1974, 13(10): 1578.

DOI: 10.1143/JJAP.13.1578

CrossRef Google Scholar

Kohei Sasaki, Akito Kuramata, Takekazu Masui, et al. Device-Quality β-Ga2O3 Epitaxial Films Fabricated by Ozone Molecular Beam Epitaxy[J]. Applied Physics Express, 2012, 5, 035502.

DOI: 10.1143/APEX.5.035502

CrossRef Google Scholar

Chang P C, Fan Z Y, Tseng W Y, et al. β-Ga2O3 nanowires: synthesis, characterization, and p-channel field-effect transistor[J]. Applied Physics Letters, 2005, 87(22): 222102.

DOI: 10.1063/1.2135867

CrossRef Google Scholar

Varley J B, Weber J R, Janotti A, et al. Oxygen vacancies and donor impurities in β-Ga2O3[J]. Applied Physics Letters, 2010, 97(14): 142106.

DOI: 10.1063/1.3499306

CrossRef Google Scholar

Orita M, Hiramatsu H, Ohta H, et al. Preparation of highly conductive, deep ultraviolet transparent β-Ga2O3 thin film at low deposition temperatures[J]. Thin Solid Films, 2002, 411(1): 134–139.

DOI: 10.1016/S0040-6090(02)00202-X

CrossRef Google Scholar

Du X J, Li Z, Luan C N, et al. Preparation and characterization of Sn-doped β-Ga2O3 homoepitaxial films by MOCVD[J]. Journal of Materials Science, 2015, 50(8): 3252–3257.

DOI: 10.1007/s10853-015-8893-4

CrossRef Google Scholar

Usui Y, Nakauchi D, Kawano N, et al. Scintillation and optical properties of Sn-doped Ga2O3 single crystals[J]. Journal of Physics and Chemistry of Solids, 2018, 117: 36–41.

DOI: 10.1016/j.jpcs.2018.02.027

CrossRef Google Scholar

Sasaki K, Higashiwaki M, Kuramata A, et al. Growth temperature dependences of structural and electrical properties of Ga2O3 epitaxial films grown on β-Ga2O3 (010) substrates by molecular beam epitaxy[J]. Journal of Crystal Growth, 2014, 392: 30–33.

DOI: 10.1016/j.jcrysgro.2014.02.002

CrossRef Google Scholar

Li M Q, Yang N, Wang G G, et al. Highly preferred orientation of Ga2O3 films sputtered on SiC substrates for deep UV photodetector application[J]. Applied Surface Science, 2019, 471: 694–702.

DOI: 10.1016/j.apsusc.2018.12.045

CrossRef Google Scholar

Carrano J C, Li T, Grudowski P A, et al. Comprehensive characterization of metal-semiconductor-metal ultraviolet photodetectors fabricated on single-crystal GaN[J]. Journal of Applied Physics, 1998, 83(11): 6148–6160.

DOI: 10.1063/1.367484

CrossRef Google Scholar

Guo D Y, Wu Z P, Li P G, et al. Fabrication of β-Ga2O3 thin films and solar-blind photodetectors by laser MBE technology[J]. Optical Materials Express, 2014, 4(5): 1067–1076.

DOI: 10.1364/OME.4.001067

CrossRef Google Scholar

Related Articles
Show full outline

Catalog

    Liu Xingzhao

    1. On this Site
    2. On Google Scholar
    3. On PubMed
    Effects of Sn doping on Ga2O3-based solar blind photodetectors
    • Figure  1

      The schematic diagram of the Ga2O3 MSM solar-blind ultraviolet PD

    • Figure  2

      XRD spectra of β-Ga2O3 and Sn doped β-Ga2O3 films deposited at different SnO2 temperatures

    • Figure  3

      The current-voltage (I-V) of the Ga2O3 MSM PDs with different SnO2 temperatures. (a) IdarkV characteristics on asemilogarithmic scale; (b) I−V characteristics under 254 nm DUV illumination on a semilogarithmic scale; (c) IdarkV characteristics on a linear scale; (d) Responsivity of Sn-doped Ga2O3 MSM PDs with different SnO2 temperatures

    • Figure  4

      Spectral response of the Ga2O3 MSM PDs on a semilogarithmic scale

    • Figure  5

      Time-dependent photoresponse of the Ga2O3 MSM PDs with different SnO2 temperature. (a) Response for multicycles on a linear scale; (b) Normalized transient response on a linear scale; (c) Experimental and fitted curves of rise and decay processes for β-Ga2O3 PDs; (d) Sn doped β-Ga2O3 PDs with SnO2 temperature of 900 ℃

    • Figure  1
    • Figure  2
    • Figure  3
    • Figure  4
    • Figure  5