-
Abstract
Linear array sensor S11639 is often used in mini-spectrometer for UV measurement. However, when the exposure volume of S11639 is relatively bigger, the non-linearity of the spectral response will appear. This nonlinear effect will affect the dynamic range of the mini-spectrometer, and therefore, nonlinear correction must be carried out. Photoelectric response of S11639 is measured with halogen tungsten lamp and deuterium lamp to find out the linear part between the exposure and the A/D conversion output, and straight line fitting of the data is made to obtain the factors of S11639 in the linear range. Based on it, the theoretical value in nonlinear range is got by extrapolation, and the difference between the theoretical value and the actual measurement value was calculated. The nonlinear correction of S11639 is realized by polynomial fitting with the least square method. At the same time, compared with the experimental results, the error causes of the experimental data are analyzed, and the experiment is provided for better utilization of mini-spectrometer based on S11639 for photoelectric detection in the full dynamic range.
Keywords
-
1. 引言
微型光谱仪的检测原理是利用光栅散射将复合光分解为不同波长的光,照射到CCD或者CMOS光电传感器表面,从而将光信号转换为电信号。微型光谱仪广泛应用于环境监测、食品品质、LED光谱分析的在线测量[1-5],国内外常用的微型光谱仪的线阵传感器基本上是东芝公司的TCD1304DG和索尼公司的IlX511B或者它们的改进型。由于透明的多晶硅电极能强烈吸收低于400 nm的紫外线,使紫外光线无法穿透线阵传感器表面进入其内部, 从而无法被探测到[6, 7]。S11639是滨松公司推出的一款高灵敏度CMOS线阵传感器,具有在紫外波段的高灵敏度特性,单电源5 V供电。2015年本课题组将S11639应用于微型光谱仪[8],2017年3月上海慕尼黑光电展,微型光谱仪研制生产的标杆企业——美国海洋公司在其推出的新品FX系列微型光谱仪中也用到了S11639。S11639适合于紫外波段的入门级光谱仪,未来可以取代原来入门级微型光谱仪中的紫外增敏CCD。
理想情况下,一般认为S11639的每个像元,在整个动态范围内,光的入射量与光生电荷具有良好的线性,也就是光谱灵敏度R是一个常数。实际上,从CMOS结构看, CMOS计数非线性产生主要源于成像区内像素势阱间的电荷分享和扩散, 电荷间的这种相互作用随着光的曝光量增加而增强从而导致电荷溢出等现象的发生, 因此计数值增大导致线性度变差。测量CCD或者CMOS器件的光电响应特性的方法主要有尖劈法、双缝衍射法、小孔衍射法,其光源主要是激光,也有用LED作光源测量器件[9-12]。上述方法中,激光与LED被认为是单色光,测量的是此波长处的光强或积分时间的改变对器件光电响应的影响。S11639应用于微型光谱仪,微型光谱仪本身就有一套分光系统,卤钨灯与氘灯可以互补发出从紫外到近红外(215 nm~2500 nm)范围的光谱,与此光源配合,可以测得微型光谱仪中S11639的全光谱的光电特性。通过改变积分时间改变S11639的曝光量,得到模数(A/D)转换的值。对数据进行直线拟合,从而获得S11639在线性范围内的系数,在此基础上,外推得到在非线性范围内的理论值,求出理论值与实际测量值的差异,利用最小二乘法进行多项式拟合,实现S11639线阵传感器的非线性校正,扩大了基于S11639光谱仪的测量范围。
2. 实验研究的理论依据
2.1 非线性校正的理论基础
I(λ)=KP(λ)Q(λ)t+B, 式中:K为线性斜率,是一常数;
P(λ) 表示稳定光源中在某个波长的光功率;Q(λ) 为CMOS对波长光响应量子效率;t为光谱仪的积分时间;B为读出噪声计数,在某一固定状态设置下,它也为一常量;I(λ) 表示S11639的输出计数,单位为A/D转换单位(ADUS)。图 1就是光谱仪在不同积分时间下(积分时间分别为100 ms,200 ms),对美国海洋公司卤钨灯的光谱响应。S11639的信号输出被线性放大,用16位A/D转换电路采集,通过USB口送到上位机中。根据黑体辐射理论,发光体的
P(λ) 并不是一条直线,在不同波长位置,P(λ) 相差很大。同样,S11639对波长光响应量子效率为Q(λ) ,也不是一条直线,也有一根光谱的响应曲线。但是,如果能够找到与P(λ)Q(λ) 乘积相同的波长位置,使得在不同波长位置两者I(λ) 相同,A/D输出的值就相同。然后再改变积分时间t,不同波长位置的两者I(λ) 对积分时间的变化如果是重合的(不考虑CMOS本身的像素差异),就验证了式(1)的正确性,微型光谱仪的非线性校正的理论基础就源于此。光源的光通过光纤被导入光谱仪,经过非对称的C-T光学系统,将复合光分解成单色光照射在S11639的表面,其信号通过线性放大与A/D转换,输出的转换值就是曝光量的函数。理想情况下, 入射光信号和最终数字输出之间的转移函数应该随着入射光信号增加而呈线性变化:
2.2 S11639的光电响应特性
积分时间t/ms 波长/nm 256.690 263.551 759.842 807.5 0.5 850 878 855 858 5.0 1473 1492 1466 1478 10.0 2157 2210 2138 2162 20.0 3525 3530 3541 3552 30.0 4852 4871 4906 4881 40.0 6250 6288 6248 6283 50.0 7521 7648 7543 7587 100.0 14100 14273 14358 14440 200.0 27169 27432 27597 27787 300.0 40107 40497 41030 40987 350.0 46158 46648 47616 47323 400.0 51600 51666 51620 51111 450.0 56167 56605 56595 56312 500.0 62618 63159 62597 62819 为了防止背景光干扰,实验在暗室中进行。测试的示意图如图 2所示。
光源为美国海洋公司的光源,微型光谱仪是杭州博源光电科技有限公司的BIM6602(光谱仪只进行了波长标定),在光学平台上固定光纤头,调整光谱仪与光纤头的距离,积分时间为500 ms,使得微型光谱仪在两个对应最高波长附近处恰好接近饱和,接近16位A/D转换的最大值65535。逐步减少积分时间测到光谱仪的最小积分时间。BIM6602的最小积分时间是0.5 ms,并且特意选择比较远的四个点(紫外与近红外各2点),500 ms测量起始值之间的误差小于1%,逐步减少积分时间,测量结果如表 1所示。四个波长位置数据基本上是重合的。
以759.842 nm为例,对应的积分时间与A/D转换值如图 3所示,积分时间越长,S11639的曝光量越大,越接近饱和,非线性越明显。
2.3 实验数据处理与改进
从2.2节分析可知,如果光谱仪的积分时间增加是线性的,光谱仪的A/D转换值应该是线性的。由于S11639在接近饱和时的非线性,光谱仪的输出表现为非线性,在整个动态范围内,S11639的饱和非线性限制了光谱仪的测量精度范围。为此,可以利用最小二乘法进行数据拟合处理,使得光谱仪在整个动态范围内可以得到良好的线性。拟合0.5 ms~350 ms的直线,其中:
y=−1.2838427×10−23x6+2.1452674×10−18x5−1.2917481×10−13x4+3.4400951×10−9x3−3.9299069×10−5x2+0.14931689x−97.878152. I=131.37t+957.47,R2=0.9999; 256.690 nm的拟合直线为
I=133.8t+853.35,R2=1; 通过表 2计算可知,在接近S11639的饱和位置,该款光谱仪的A/D转换值在47000以上,开始出现非线性,越靠近65535点,饱和越明显,最大误差可能达到7.61%。如果用来测量LED的光强特性就会出现误差,影响光谱仪的动态范围。
假定整个光谱仪的测量范围,基线是平直的,即B是一个与波长无关的常数,同时K为线性斜率,也是一与波长无关的常数, 这样就可以对光谱仪测得的曝光量进行修正。做出差值与A/D转换值的函数关系图,利用最小二乘法算出校准曲线,得到曝光量与差值的关系。利用多项式拟合,尝试拟合曲线,需要6次以上拟合才能使R2的值大于98%。拟合公式见式(6),式中x表示实际测量值,y是修正值,将实际测量值与修正值相加,就是修正后的真正值,表示光谱仪的曝光量。
I=133.35t+901.44,R2=0.9999. 积分时间t/ms 理论值 实际值 两者差 百分误差/% 0.5 920 855 65 7.09 5.0 1522 1466 56 3.70 10.0 2191 2138 53 2.43 20.0 3529 3541 -11 -0.33 30.0 4867 4906 -38 -0.79 40.0 6205 6248 -42 -0.68 50.0 7543 7543 0 0.00 100.0 14233 14358 -124 -0.88 200.0 27613 27597 16 0.06 300.0 40993 41030 -36 0.09 350.0 47683 47616 67 0.14 400.0 54373 51620 2753 5.06 450.0 61063 56595 4468 7.32 500.0 67753 62597 5156 7.61 积分时间t/ms 理论值 实际值 修正程度值 修正后的值 百分误差/% 0.5 1009 850 3 853 -15.47 5.0 1594 1473 47 1520 -4.63 10.0 2244 2157 73 2230 -0.63 20.0 3544 3525 72 3597 1.47 30.0 4845 4852 28 4880 0.72 40.0 6146 6250 -37 6212 1.08 50.0 7447 7521 -98 7423 -0.32 100.0 13950 14100 -173 13927 -0.16 200.0 26956 27169 151 27320 1.35 300.0 39962 40107 -434 39673 -0.72 350.0 46465 46158 333 46491 0.06 400.0 52968 51600 2265 53865 1.69 450.0 59471 56167 4378 60545 1.80 500.0 65974 62618 5147 67765 2.72 263.551 nm的拟合直线为
807.5 nm的拟合直线为
759.842 nm的拟合直线为
用759.842 nm的已拟合直线的值作为理论值,计算与实际的测量值之间的误差,以理论值作为真值计算百分误差,结果见表 2。
I=130.06t+943.67,R2=0.9999; 将校准以后式(6)推广应用到其他光谱线,计算256.690 nm光谱线,先用式(2)计算理论值,用拟合式(6)计算修正值,与实际值相加,推出接近饱和时的值,以式(2)算出的值为真值计算误差,去掉超过65535的点,可以看出其误差在2%左右,如表 3。
3. 实验结果与误差分析
T可以看成是积分时间,由式(9)可知S11639的输出前一部分与曝光量成线性关系,由式(7)可以推出后一部分与曝光量成一个对数关系,将其分别称之为线性区和非线性区。
VN=V0N−IλTCPN. S11639饱和的主要原因是电荷势阱的深度有限, 不能无限制地容纳内光电效应所产生的电荷。随着曝光量增加内光电效应逐渐明显,为了防止像元饱和后过多的电荷溢出到相邻像元中,目前S11639采用垂直溢漏技术,其光电响应可用一个NPN型耗尽基底的晶体管模型来分析[13-17],N层相当于发射极,P层相当于基极和N型基底相当于集电极,在基底电压不变的时候,击穿电流IPT是晶体管N层电势的函数:
式中:Iλ是总电流,CPN是晶体管等效电容。当VN很小时,击穿电流IPT几乎为零。由式(8)可以推出:
IPT=I0exp(−βVNη), CPNdVNdt=−Iλ−IPT, 式中:
β=qkT ,I0取决于基底电压工艺参数,η为非理想性因数,VN表示晶体管N层电势。VN的变化为在短积分时间,理论值与实际测量值也偏差超过2%,甚至超过10%,这是由于:1)待测系统的暗噪声误差; 2)在短时曝光中, 快门的响应时间也会影响进入CMOS光子数的相对偏差值, 从而增加计数误差, 影响非线性度;3)受到加工工艺的限制,每个像素的材料、面积大小各不相同, 导致像元本身的响应不一致,即CMOS的PRNU参数误差,尽管起始值曝光量可能一样。
4. 结论
通过本文的工作可以看出,光谱仪在进行强度测量过程中,为保证光谱仪测量±2%的精度要求,如果需要光谱仪的全动态范围应用时,不得不考虑光电传感器的非线性。光谱仪曝光量的最佳范围:起始值为满量程的5%;终了值为满量程的80%(未线性校正),通过非线性校正,可以延伸到100%。校正后的光谱仪大大拓展了光谱仪的上限动态范围,特别对LED的辐射度测量与色度测量有比较好的应用价值,为更好地利用基于S11639的光谱仪的全动态范围光电检测提供了实验依据。
-
References
苏小会, 陈飞, 徐淑萍, 等.基于光谱分析的便携式烟气分析仪[J].仪表技术与传感器, 2012(11): 71–74.
DOI: 10.3969/j.issn.1002-1841.2012.11.024Su Xiaohui, Chen Fei, Xu Shuping, et al. Portable flue gas analyzer based on spectrum[J]. Instrument Technique and Sensor, 2012(11): 71–74.
DOI: 10.3969/j.issn.1002-1841.2012.11.024樊书祥, 黄文倩, 张保华, 等.便携式苹果糖度光谱检测仪的设计与试验[J].红外与激光工程, 2014, 43(增刊1): 219–224.
http://d.wanfangdata.com.cn/Periodical_hwyjggc2014z1037.aspxFan Shuxiang, Huang Wenqian, Zhang Baohua, et al. Design and experiment on portable apple soluble solids content spectrometer[J]. Infrared and Laser Engineering, 2014, 43(S1): 219–224.
http://d.wanfangdata.com.cn/Periodical_hwyjggc2014z1037.aspx韩孝贞, 温志渝, 谢瑛珂, 等.多参数水质检测仪控制与信号处理系统软件设计[J].仪表技术与传感器, 2014(8): 20–22, 65.
http://www.cqvip.com/QK/94978X/201408/662233314.htmlHan Xiaozhen, Wen Zhiyu, Xie Yingke, et al. Software design of control and signal processing system for multi-parameter water quality detecting instrument[J]. Instrument Technique and Sensor, 2014(8): 20–22, 65.
http://www.cqvip.com/QK/94978X/201408/662233314.html张倩, 张学典, 常敏, 等.一种用于LED特性检测的实验仪器的研究[J].光学仪器, 2013, 35(1): 84–88.
http://kns.cnki.net/KCMS/detail/detail.aspx?filename=gxyq201301017&dbname=CJFD&dbcode=CJFQZhang Qian, Zhang Xuedian, Chang Min, et al. A research of laboratory instrument for LED property measurement[J]. Optical Instruments, 2013, 35(1): 84–88.
http://kns.cnki.net/KCMS/detail/detail.aspx?filename=gxyq201301017&dbname=CJFD&dbcode=CJFQ曾甜玲, 温志渝, 温中泉, 等.基于紫外光谱分析的水质监测技术研究进展[J].光谱学与光谱分析, 2013, 33(4): 1098–1103.
http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gpxygpfx201104047Zeng Tianling, Wen Zhiyu, Wen Zhongquan, et al. Research progressin water quality monitoring technology based on ultraviolet spectrum analysis[J]. Spectroscopy and Spectral Analysis, 2013, 33(4): 1098–1103.
http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gpxygpfx201104047杜晨光, 孙利群, 丁志田.利用晕苯增强CCD紫外响应的实验研究[J].光学技术, 2010, 36(5): 753–757.
http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gxjs201005025Du Chenguang, Sun Liqun, Ding Zhitian. Experiment study of enhancing CCD ultraviolet response using coronene[J]. Optical Technique, 2010, 36(5): 753–757.
http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gxjs201005025View full references list -
Cited by
Periodical cited type(3)
1. 童建平,杨建武,郑文强,汪飞,杨浩. 阵列光电传感器的非线性校正. 计量学报. 2019(03): 416-420 . 2. 王国栋,夏果,李志远,胡明勇,陆红波. 便携式紫外-可见光谱仪设计及关键技术研究. 光电工程. 2018(10): 73-84 . 本站查看
3. 徐丹阳,杜春年. 基于面阵CCD的高灵敏度微型光谱仪的设计与实现. 光电工程. 2018(11): 33-43 . 本站查看
Other cited types(1)
-
Author Information
-
Copyright
The copyright belongs to the Institute of Optics and Electronics, Chinese Academy of Sciences, but the article content can be freely downloaded from this website and used for free in academic and research work. -
About this Article
Cite this Article
Jianping Tong, Jianxun Gao, Fei Wang, Hao Yang. Nonlinear correction of the sensor S11639 in mini-spectrometer. Opto-Electronic Engineering 44, 1101-1106 (2017). DOI: 10.3969/j.issn.1003-501X.2017.11.010Download CitationArticle History
- Received Date August 09, 2017
- Revised Date October 09, 2017
- Published Date November 14, 2017
Article Metrics
Article Views(10655) PDF Downloads(4741)