Fan Y, Zheng CY, Shu YF et al. Aberration-corrected differential phase contrast microscopy with annular illuminations. Opto-Electron Sci x, 240037 (2025). doi: 10.29026/oes.2025.240037
Citation: Fan Y, Zheng CY, Shu YF et al. Aberration-corrected differential phase contrast microscopy with annular illuminations. Opto-Electron Sci x, 240037 (2025). doi: 10.29026/oes.2025.240037

Article Open Access

Aberration-corrected differential phase contrast microscopy with annular illuminations

More Information
  • Quantitative phase imaging (QPI) enables non-invasive cellular analysis by utilizing cell thickness and refractive index as intrinsic probes, revolutionizing label-free microscopy in cellular research. Differential phase contrast (DPC), a non-interferometric QPI technique, requires only four intensity images under asymmetric illumination to recover the phase of a sample, offering the advantages of being label-free, non-coherent and highly robust. Its phase reconstruction result relies on precise modeling of the phase transfer function (PTF). However, in real optical systems, the PTF will deviate from its theoretical ideal due to the unknown wavefront aberrations, which will lead to significant artifacts and distortions in the reconstructed phase. We propose an aberration-corrected DPC (ACDPC) method that utilizes three intensity images under annular illumination to jointly retrieve the aberration and the phase, achieving high-quality QPI with minimal raw data. By employing three annular illuminations precisely matched to the numerical aperture of the objective lens, the object information is transmitted into the acquired intensity with a high signal-to-noise ratio. Phase retrieval is achieved by an iterative deconvolution algorithm that uses simulated annealing to estimate the aberration and further employs regularized deconvolution to reconstruct the phase, ultimately obtaining a refined complex pupil function and an aberration-corrected quantitative phase. We demonstrate that ACDPC is robust to multi-order aberrations without any priori knowledge, and can effectively retrieve and correct system aberrations to obtain high-quality quantitative phase. Experimental results show that ACDPC can clearly reproduce subcellular structures such as vesicles and lipid droplets with higher resolution than conventional DPC, which opens up new possibilities for more accurate subcellular structure analysis in cell biology.
  • 加载中
  • [1] Zernike F. Phase contrast. Z Tech Physik 16, 454 (1935).

    Google Scholar

    [2] Evanko D, Heinrichs A, Rosenthal C. Milestones in light microscopy. Nat Cell Biol 11, 1165 (2009). doi: 10.1038/ncb1009-1165

    CrossRef Google Scholar

    [3] Stephens DJ, Allan VJ. Light microscopy techniques for live cell imaging. Science 300, 82–86 (2003). doi: 10.1126/science.1082160

    CrossRef Google Scholar

    [4] Qian JM, Cao Y, Bi Y et al. Structured illumination microscopy based on principal component analysis. eLight 3, 4 (2023). doi: 10.1186/s43593-022-00035-x

    CrossRef Google Scholar

    [5] Evanko D. Label-free microscopy. Nat Methods 7, 36 (2010).

    Google Scholar

    [6] Fan Y, Li JJ, Lu LP et al. Smart computational light microscopes (SCLMs) of smart computational imaging laboratory (SCILab). PhotoniX 2, 19 (2021). doi: 10.1186/s43074-021-00040-2

    CrossRef Google Scholar

    [7] Küppers M, Albrecht D, Kashkanova AD et al. Confocal interferometric scattering microscopy reveals 3D nanoscopic structure and dynamics in live cells. Nat Commun 14, 1962 (2023). doi: 10.1038/s41467-023-37497-7

    CrossRef Google Scholar

    [8] Kemper B, Bauwens A, Vollmer A et al. Label-free quantitative cell division monitoring of endothelial cells by digital holographic microscopy. J Biomed Opt 15, 036009 (2010).

    Google Scholar

    [9] Liu SQ, Yu FH, Hong R et al. Advances in phase-sensitive optical time-domain reflectometry. Opto-Electron Adv 5, 200078 (2022). doi: 10.29026/oea.2022.200078

    CrossRef Google Scholar

    [10] Fienup JR. Phase retrieval algorithms: a comparison. Appl Opt 21, 2758–2769 (1982). doi: 10.1364/AO.21.002758

    CrossRef Google Scholar

    [11] Popescu G. Quantitative Phase Imaging of Cells and Tissues (McGraw-Hill, New York, 2011).

    Google Scholar

    [12] Park Y, Depeursinge C, Popescu G. Quantitative phase imaging in biomedicine. Nat Photon 12, 578–589 (2018). doi: 10.1038/s41566-018-0253-x

    CrossRef Google Scholar

    [13] Kim T, Zhou RJ, Goddard LL et al. Solving inverse scattering problems in biological samples by quantitative phase imaging. Laser Photon Rev 10, 13–39 (2016). doi: 10.1002/lpor.201400467

    CrossRef Google Scholar

    [14] Huang ZZ, Memmolo P, Ferraro P et al. Dual-plane coupled phase retrieval for non-prior holographic imaging. PhotoniX 3, 3 (2022). doi: 10.1186/s43074-021-00046-w

    CrossRef Google Scholar

    [15] Gao P, Yao BL, Harder I et al. Phase-shifting Zernike phase contrast microscopy for quantitative phase measurement. Opt Lett 36, 4305–4307 (2011). doi: 10.1364/OL.36.004305

    CrossRef Google Scholar

    [16] Hamilton DK, Sheppard CJP. Differential phase contrast in scanning optical microscopy. J Microsc 133, 27–39 (1984). doi: 10.1111/j.1365-2818.1984.tb00460.x

    CrossRef Google Scholar

    [17] Mehta SB, Sheppard CJR. Quantitative phase-gradient imaging at high resolution with asymmetric illumination-based differential phase contrast. Opt Lett 34, 1924–1926 (2009). doi: 10.1364/OL.34.001924

    CrossRef Google Scholar

    [18] Bertero M, Boccacci P, De Mol C. Introduction to Inverse Problems in Imaging (CRC Press, Boca Raton, 2021).

    Google Scholar

    [19] Tian L, Waller L. Quantitative differential phase contrast imaging in an led array microscope. Opt Express 23, 11394–11403 (2015). doi: 10.1364/OE.23.011394

    CrossRef Google Scholar

    [20] Chen HH, Lin YZ, Luo Y. Isotropic differential phase contrast microscopy for quantitative phase bio-imaging. J Biophoton 11, e201700364 (2018). doi: 10.1002/jbio.201700364

    CrossRef Google Scholar

    [21] Fan Y, Sun JS, Shu YF et al. Accurate quantitative phase imaging by differential phase contrast with partially coherent illumination: beyond weak object approximation. Photon Res 11, 442–455 (2023). doi: 10.1364/PRJ.476170

    CrossRef Google Scholar

    [22] Hamilton DK, Sheppard CJR, Wilson T. Improved imaging of phase gradients in scanning optical microscopy. J Microsc 135, 275–286 (1984). doi: 10.1111/j.1365-2818.1984.tb02533.x

    CrossRef Google Scholar

    [23] Gao P, Yao BL, Min JW et al. Autofocusing of digital holographic microscopy based on off-axis illuminations. Opt Lett 37, 3630–3632 (2012). doi: 10.1364/OL.37.003630

    CrossRef Google Scholar

    [24] Song PM, Jiang SW, Zhang H et al. Full-field Fourier ptychography (FFP): spatially varying pupil modeling and its application for rapid field-dependent aberration metrology. APL Photon 4, 050802 (2019). doi: 10.1063/1.5090552

    CrossRef Google Scholar

    [25] Kam Z, Hanser B, Gustafsson MG et al. Computational adaptive optics for live three-dimensional biological imaging. Proc Natl Acad Sci USA 98, 3790–3795 (2001). doi: 10.1073/pnas.071275698

    CrossRef Google Scholar

    [26] South FA, Liu YZ, Bower AJ et al. Wavefront measurement using computational adaptive optics. J Opt Soc Am A 35, 466–473 (2018). doi: 10.1364/JOSAA.35.000466

    CrossRef Google Scholar

    [27] Zheng GA, Ou XZ, Horstmeyer R et al. Characterization of spatially varying aberrations for wide field-of-view microscopy. Opt Express 21, 15131–15143 (2013). doi: 10.1364/OE.21.015131

    CrossRef Google Scholar

    [28] Horstmeyer R, Ou XZ, Chung J et al. Overlapped Fourier coding for optical aberration removal. Opt Express 22, 24062–24080 (2014). doi: 10.1364/OE.22.024062

    CrossRef Google Scholar

    [29] Bostan E, Heckel R, Chen M et al. Deep phase decoder: self-calibrating phase microscopy with an untrained deep neural network. Optica 7, 559–562 (2020). doi: 10.1364/OPTICA.389314

    CrossRef Google Scholar

    [30] Goda K, Popescu G, Tsia KK et al. Computational optical imaging goes viral. APL Photon 5, 030401 (2020). doi: 10.1063/5.0004471

    CrossRef Google Scholar

    [31] Li ZS, Chen YY, Sun JS et al. High bandwidth-utilization digital holographic reconstruction using an untrained neural network. Appl Sci 12, 10656 (2022). doi: 10.3390/app122010656

    CrossRef Google Scholar

    [32] Zheng GA, Horstmeyer R, Yang CH. Wide-field, high-resolution Fourier ptychographic microscopy. Nat Photon 7, 739–745 (2013). doi: 10.1038/nphoton.2013.187

    CrossRef Google Scholar

    [33] Ou XZ, Zheng GA, Yang CH. Embedded pupil function recovery for Fourier ptychographic microscopy. Opt Express 22, 4960–4972 (2014). doi: 10.1364/OE.22.004960

    CrossRef Google Scholar

    [34] Shu YF, Sun JS, Lyu JM et al. Adaptive optical quantitative phase imaging based on annular illumination Fourier ptychographic microscopy. PhotoniX 3, 24 (2022). doi: 10.1186/s43074-022-00071-3

    CrossRef Google Scholar

    [35] Lu LP, Li JJ, Shu YF et al. Hybrid brightfield and darkfield transport of intensity approach for high-throughput quantitative phase microscopy. Adv Photon 4, 056002 (2022).

    Google Scholar

    [36] Chen M, Phillips ZF, Waller L. Quantitative differential phase contrast (DPC) microscopy with computational aberration correction. Opt Express 26, 32888–32899 (2018). doi: 10.1364/OE.26.032888

    CrossRef Google Scholar

    [37] Sun JS, Zuo C, Zhang JJ et al. High-speed Fourier ptychographic microscopy based on programmable annular illuminations. Sci Rep 8, 7669 (2018). doi: 10.1038/s41598-018-25797-8

    CrossRef Google Scholar

    [38] Fan Y, Sun JS, Chen Q et al. Optimal illumination scheme for isotropic quantitative differential phase contrast microscopy. Photon Res 7, 890–904 (2019). doi: 10.1364/PRJ.7.000890

    CrossRef Google Scholar

    [39] Cao RZ, Shen C, Yang CH. High-resolution, large field-of-view label-free imaging via aberration-corrected, closed-form complex field reconstruction. Nat Commun 15, 4713 (2024). doi: 10.1038/s41467-024-49126-y

    CrossRef Google Scholar

    [40] Fan Y, Sun JS, Chen Q et al. Single-shot isotropic quantitative phase microscopy based on color-multiplexed differential phase contrast. APL Photon 4, 121301 (2019). doi: 10.1063/1.5124535

    CrossRef Google Scholar

    [41] Sasian J. Introduction to Aberrations in Optical Imaging Systems (Cambridge University Press, Cambridge, 2012).

    Google Scholar

    [42] Booth MJ. Adaptive optics in microscopy. Philos Trans A Math Phys Eng Sci 365, 2829–2843 (2007).

    Google Scholar

    [43] Zernike F, Nijboer B. Theorie de la diffraction des aberrations. La Theorie des Images Optiques 227–235 (1949).

    Google Scholar

    [44] Wyant JC, Creath K. Basic wavefront aberration theory for optical metrology. Appl Opt Opt Eng 11, 28–39 (1992).

    Google Scholar

    [45] Lakshminarayanan V, Fleck A. Zernike polynomials: a guide. J Mod Opt 58, 545–561 (2011). doi: 10.1080/09500340.2011.554896

    CrossRef Google Scholar

    [46] Zhou S, Li JJ, Sun JS et al. Transport-of-intensity Fourier ptychographic diffraction tomography: defying the matched illumination condition. Optica 9, 1362–1373 (2022). doi: 10.1364/OPTICA.476474

    CrossRef Google Scholar

    [47] Lenzen F, Scherzer O. Tikhonov type regularization methods: history and recent progress. In Proceedings of European Congress on Computational Methods in Applied Sciences and Engineering 1–21 (ECCOMAS, 2004).

    Google Scholar

    [48] Sargis RM, Johnson DN, Choudhury RA et al. Environmental endocrine disruptors promote adipogenesis in the 3T3-L1 cell line through glucocorticoid receptor activation. Obesity 18, 1283–1288 (2010). doi: 10.1038/oby.2009.419

    CrossRef Google Scholar

    [49] Chen LW, Zhou Y, Li Y et al. Microsphere enhanced optical imaging and patterning: from physics to applications. Appl Phys Rev 6, 021304 (2019). doi: 10.1063/1.5082215

    CrossRef Google Scholar

    [50] Boneberg J, Leiderer P. Optical near-field imaging and nanostructuring by means of laser ablation. Opto-Electron Sci 1, 210003 (2022). doi: 10.29026/oes.2022.210003

    CrossRef Google Scholar

    [51] Chu CY, Liu ZT, Chen ML et al. Wide-spectrum optical synthetic aperture imaging via spatial intensity interferometry. Opto-Electron Adv 6, 230017 (2023). doi: 10.29026/oea.2023.230017

    CrossRef Google Scholar

  • Supplementary information for Aberration-corrected differential phase contrast microscopy with annular illuminations
    Supplementary Movie S1
    Supplementary Movie S2
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(5)

Article Metrics

Article views() PDF downloads() Cited by()

Access History
Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint