Han JL, Li MQ, Wu RB et al. High fiber-to-fiber net gain in erbium-doped thin film lithium niobate waveguide amplifier as an external gain chip. Opto-Electron Sci 4, 250004 (2025). doi: 10.29026/oes.2025.250004
Citation: Han JL, Li MQ, Wu RB et al. High fiber-to-fiber net gain in erbium-doped thin film lithium niobate waveguide amplifier as an external gain chip. Opto-Electron Sci 4, 250004 (2025). doi: 10.29026/oes.2025.250004

Article Open Access

High fiber-to-fiber net gain in erbium-doped thin film lithium niobate waveguide amplifier as an external gain chip

More Information
  • Miniaturized erbium-doped waveguide amplifiers attracted great interests in recent decades due to their high gain-efficiency and function-scalability in the telecom C-band. In this work, an erbium-doped thin film lithium niobate waveguide amplifier achieving >10 dB off-chip (fiber-to-fiber) net gain and >20 mW fiber-output amplified power is demonstrated, thanks to the low-propagation-loss waveguides and robust waveguide edge-couplers prepared by the photolithography assisted chemomechanical etching technique. Systematic investigation on the fabricated waveguide amplifiers reveals remarkable optical gain around the peak wavelength of 1532 nm as well as the low fiber-coupling loss of −1.2 dB/facet. A fiber Bragg-grating based waveguide laser is further demonstrated using the fabricated waveguide amplifier as the external gain chip, which generates >2 mW off-chip power continuous-wave lasing around the gain peak at 1532 nm. The unambiguous demonstration of fiber-to-fiber net gain of the erbium-doped thinfilm lithium niobate (TFLN) waveguide amplifier as well as its external gain chip application will benefit diverse fields demanding scalable gain elements with high-speed tunability.
  • 加载中
  • [1] Poole SB, Payne DN, Mears RJ et al. Fabrication and characterization of low-loss optical fibers containing rare-earth ions. J Lightwave Technol 4, 870–876 (1986). doi: 10.1109/JLT.1986.1074811

    CrossRef Google Scholar

    [2] Mears RJ, Reekie L, Jauncey IM et al. Low-noise erbium-doped fibre amplifier operating at 1.54μm. Electron Lett 23, 1026–1028 (1987). doi: 10.1049/el:19870719

    CrossRef Google Scholar

    [3] Jauregui C, Limpert J, Tünnermann A. High-power fibre lasers. Nat Photonics 7, 861–867 (2013). doi: 10.1038/nphoton.2013.273

    CrossRef Google Scholar

    [4] Bradley JDB, Pollnau M. Erbium-doped integrated waveguide amplifiers and lasers. Laser Photonics Rev 5, 368–403 (2011). doi: 10.1002/lpor.201000015

    CrossRef Google Scholar

    [5] Liu Y, Qiu ZR, Ji XR et al. A photonic integrated circuit-based erbium-doped amplifier. Science 376, 1309–1313 (2022). doi: 10.1126/science.abo2631

    CrossRef Google Scholar

    [6] Vázquez-Córdova SA, Dijkstra M, Bernhardi EH et al. Erbium-doped spiral amplifiers with 20 dB of net gain on silicon. Opt Express 22, 25993–26004 (2014). doi: 10.1364/OE.22.025993

    CrossRef Google Scholar

    [7] Brüske D, Suntsov S, Rüter CE et al. Efficient ridge waveguide amplifiers and lasers in Er-doped lithium niobate by optical grade dicing and three-side Er and Ti in-diffusion. Opt Express 25, 29374–29379 (2017). doi: 10.1364/OE.25.029374

    CrossRef Google Scholar

    [8] Mu JF, Dijkstra M, Korterik J et al. High-gain waveguide amplifiers in Si3N4 technology via double-layer monolithic integration. Photonics Res 8, 1634–1641 (2020). doi: 10.1364/PRJ.401055

    CrossRef Google Scholar

    [9] Bonneville DB, Osornio-Martinez CE, Dijkstra M et al. High on-chip gain spiral Al2O3: Er3+ waveguide amplifiers. Opt Express 32, 15527–15536 (2024). doi: 10.1364/OE.516705

    CrossRef Google Scholar

    [10] Jia YC, Wu JW, Sun XL et al. Integrated photonics based on rare-earth ion-doped thin-film lithium niobate. Laser Photonics Rev 16, 2200059 (2022). doi: 10.1002/lpor.202200059

    CrossRef Google Scholar

    [11] Chen ZX, Xu Q, Zhang K et al. Efficient erbium-doped thin-film lithium niobate waveguide amplifiers. Opt Lett 46, 1161–1164 (2021). doi: 10.1364/OL.420250

    CrossRef Google Scholar

    [12] Luo Q, Yang C, Hao ZZ et al. On-chip erbium-doped lithium niobate waveguide amplifiers. Chin Opt Lett 19, 060008 (2021). doi: 10.3788/COL202119.060008

    CrossRef Google Scholar

    [13] Yan XS, Liu YA, Wu JW et al. Integrated spiral waveguide amplifiers on erbium-doped thin-film lithium niobate. arXiv: 2105.00214, 2021. https://doi.org/10.48550/arXiv.2105.00214.

    Google Scholar

    [14] Zhou JX, Liang YT, Liu ZX et al. On-chip integrated waveguide amplifiers on erbium-doped thin-film lithium niobate on insulator. Laser Photonics Rev 15, 2100030 (2021). doi: 10.1002/lpor.202100030

    CrossRef Google Scholar

    [15] Liang YT, Zhou JX, Liu ZX et al. A high-gain cladded waveguide amplifier on erbium doped thin-film lithium niobate fabricated using photolithography assisted chemo-mechanical etching. Nanophotonics 11, 1033–1040 (2022). doi: 10.1515/nanoph-2021-0737

    CrossRef Google Scholar

    [16] Cai ML, Wu K, Xiang JM et al. Erbium-doped lithium niobate thin film waveguide amplifier with 16 dB internal net gain. IEEE J Sel Top Quantum Electron 28, 8200608 (2022).

    Google Scholar

    [17] Yan CL, Wang SQ, Zhao S et al. A short high-gain waveguide amplifier based on low concentration erbium-doped thin-film lithium niobate on insulator. Appl Phys Lett 122, 123503 (2023). doi: 10.1063/5.0137678

    CrossRef Google Scholar

    [18] Wu JW, Yan XS, Wang XY et al. Efficient integrated amplifier-assisted laser on erbium-doped lithium niobate. ACS Photonics 11, 2114–2122 (2024). doi: 10.1021/acsphotonics.4c00391

    CrossRef Google Scholar

    [19] Cai ML, Li TY, Zhang XJ et al. Gain dynamics in integrated waveguide amplifier based on erbium-doped thin-film lithium niobate. ACS Photonics 11, 4923–4932 (2024). doi: 10.1021/acsphotonics.4c01433

    CrossRef Google Scholar

    [20] Wu RB, Wang M, Xu J et al. Long low-loss-litium niobate on insulator waveguides with sub-nanometer surface roughness. Nanomaterials 8, 910 (2018). doi: 10.3390/nano8110910

    CrossRef Google Scholar

    [21] Wang M, Wu RB, Lin JT et al. Chemo-mechanical polish lithography: a pathway to low loss large-scale photonic integration on lithium niobate on insulator. Quantum Eng 1, e9 (2019). doi: 10.1002/que2.9

    CrossRef Google Scholar

    [22] Bao R, Fang ZW, Liu J et al. An erbium-doped waveguide amplifier on thin film lithium niobate with an output power exceeding 100 mW. Laser Photonics Rev 19, 2400765 (2025). doi: 10.1002/lpor.202400765

    CrossRef Google Scholar

    [23] Wu RB, Gao L, Liang YT et al. High-production-rate fabrication of low-loss lithium niobate electro-optic modulators using photolithography assisted chemo-mechanical etching (PLACE). Micromachine 13, 378 (2022). doi: 10.3390/mi13030378

    CrossRef Google Scholar

    [24] Zhang MR, Wu JY, Zhao ZY et al. Efficient and polarization insensitive edge coupler based on cascaded vertical waveguide tapers. Opt Express 31, 31796–31805 (2023). doi: 10.1364/OE.498764

    CrossRef Google Scholar

    [25] Huang CH, McCaughan L, Gill DM. Evaluation of absorption and emission cross sections of Er-doped LiNbO3 for application to integrated optic amplifiers. J Lightwave Technol 12, 803–809 (1994). doi: 10.1109/50.293972

    CrossRef Google Scholar

    [26] Thiel CW, Macfarlane RM, Böttger T et al. Optical decoherence and persistent spectral hole burning in Er3+: LiNbO3. J Lumin 130, 1603–1609 (2010). doi: 10.1016/j.jlumin.2009.12.020

    CrossRef Google Scholar

    [27] Brinkmann R, Baumann I, Dinand M et al. Erbium-doped single- and double-pass Ti: LiNbO3 waveguide amplifiers. IEEE J Quantum Electron 30, 2356–2360 (1994). doi: 10.1109/3.328589

    CrossRef Google Scholar

    [28] Huang CH, McCaughan L. 980-nm-pumped Er-doped LiNbO3 waveguide amplifiers: a comparison with 1484-nm pumping. IEEE J Sel Top Quantum Electron 2, 367–372 (1996). doi: 10.1109/2944.577396

    CrossRef Google Scholar

    [29] Veasey DL, Gary JM, Amin J et al. Time-dependent modeling of erbium-doped waveguide lasers in lithium niobate pumped at 980 and 1480 nm. IEEE J Quantum Electron 33, 1647–1662 (1997). doi: 10.1109/3.631259

    CrossRef Google Scholar

    [30] Dinard M, Sohler W. Theoretical modeling of optical amplification in Er-doped Ti: LiNbO3 waveguides. IEEE J Quantum Electron 30, 1267–1276 (1994). doi: 10.1109/3.303692

    CrossRef Google Scholar

    [31] Giles CR, Desurvire E. Modeling erbium-doped fiber amplifiers. J Lightwave Technol 9, 271–283 (1991). doi: 10.1109/50.65886

    CrossRef Google Scholar

    [32] Desurvire E, Zyskind JL, Simpson JR. Spectral gain hole-burning at 1.53 μm in erbium-doped fiber amplifiers. IEEE Photonics Technol Lett 2, 246–248 (1990). doi: 10.1109/68.53251

    CrossRef Google Scholar

    [33] Han JL, Li MQ, Dong QN et al. Suppression of parasitic lasing in erbium doped thin film lithium niobate waveguide amplifier by integrated wavelength division multiplexer. APL Photonics 9, 126108 (2024). doi: 10.1063/5.0232333

    CrossRef Google Scholar

  • Supplementary information for High fiber-to-fiber net gain in erbium-doped thin film lithium niobate waveguide amplifier as an external gain chip
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(4)

Article Metrics

Article views() PDF downloads() Cited by()

Access History
Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint